• Title/Summary/Keyword: Finish Machining

Search Result 162, Processing Time 0.021 seconds

A Study on the Microstructural, Thermal and Mechanical Properties of Silicon Nitride Ceramic

  • Kim, Jong-Do;Lee, Su-Jin;Lee, Jae-Hoon;Sano, Yuji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1026-1033
    • /
    • 2009
  • Fine ceramics have high strength, excellent wear resistance, chemical stability and high strength at high temperature and are receiving attention in various fields such as construction, engineering, aerospace and marine science. Finish machining process is required to obtain precise ceramics components because sintering process necessary for obtaining high strength and high quality ceramics reduces the dimensions of components and precision of shape. But high strength and brittleness of ceramics materials cause difficulty in processing. So a process for obtaining wanted dimensions is studying using high temperature which makes ceramics softened and thermal affected recently. Laser beam is a very useful optical device for these kinds of processes. Laser process such as laser cutting, laser machining, laser heat treatment and laser-assisted machining(LAM) is researching to manufacture practical ceramics components using intense laser source which can cause local softening and damage of workpiece. In this paper, microstructural and mechanical properties of silicon nitride heated are studied as a basic study for researching of ceramics process by laser beam. The surface variation of HIP and SSN-silicon nitride was analyzed with SEM and EDS. A processing at $1,300^{\circ}C$ or above causes N element to combine into $N_2$ gas and the gas busts from surface. These phenomena make bloat, craters and heat defects on the surface of silicon nitride. Also, oxygen content is largely increased to oxidize the surface and it causes changing of phases and reducing of hardness of surface.

Tapping Machining Characteristics of Titanium Hard-to-Cut Material (티타늄 난삭재의 탭핑 가공 특성)

  • Lee, Ho-Chang;Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2011
  • This study compared and analyzed manual tapping and automatic tapping regarding tapping process characteristics of titanium hard-to-cut-material. Tapping process characteristics of titanium hard-to-cut-material are evaluated as the quality of a screw, wear of a tap, economic analysis, and cycle time etc. The type of screw threads after manual tapping is formed as an irregular type of screw threads, and perfect screw threads are created after automatic tapping. In addition, the chip type after manual tapping process is formed as the discontinuous chip due to work hardening, and the powder type of chip after automatic tapping process is created. In terms of cycle time, an automatic tapping process is shortened by 70% compared to manual tapping process. Insert tip wear of an automatic tapping shown in the process of 5-hole tapping is not found, but hand tap wear for finish cutting is most severe.

Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle (고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계)

  • 노승국;경진호;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF

신경회로망을 이용한 채터진동의 인프로세스 감시

  • Park, Chul;Kang, Myung-Chang;Kim, Jung-Suk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.70-75
    • /
    • 1993
  • Chatter vibration is an unwanted phenomenon in metal cutting and it always affects surface finish, tool life machine life and the productivity of machining process. The In-process monitoring & control of chatter vibration is necessarily required to automation system. In this study, we constructed the multi-sensing system using Tool Dynamometer,Accelerometer and AE(Acoustic Emission) sensor for the credible detection of chatter vibration. And a new approach using a neural network to process the features of multi-sensor for the recognition of chatter vibration in turning operation is proposed. With the back propagation training process, the neural network memorize and classify the feature difference of multi-sensor signals.

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim, Seo-Kil;Cho, Jae-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

A Study on Characteristics of Die Finishing Using Conductive Elastic Tool (도전성 탄성공구를 이용한 금형연마 특성에 관한 연구)

  • 황찬해;임동재;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.96-102
    • /
    • 2000
  • The finishing process for dies and molds is an important process because it has influence on final quality of products. And it is difficult to automatize finishing process so that the process has depended on expert's skill until now. However, recently a study on development of die automatic finishing machine has been progressed, and actually this machine is applied to fabrication of die. But the research about tooling system is not enough and finishing tool must have high machining efficiency and adaptability of curved surface. So, this study investigated the application of conductive elastic tool which is composed of metal-resin bonded pellet and elastic backing material. The metal-resin bonded pellet is used to finish the surface by conventional mechanical grinding or electro-chemial grinding method. And elastic backing material is used to follow the curved surface. So conductive elastic tool has long lifetime, uniform removal rate and adaptability of curved surface.

  • PDF

Measurement of Spindle Thermal Errors in a Machine Tool Using Hemispherical Ball Bar Test (반구상의 볼바측정을 통한 스핀들 열변형 오차 측정)

  • Yang, Seung-Han;Kim, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1359-1367
    • /
    • 2001
  • Improvement of machine tool accuracy is an essential part of quality control in manufacturing process. Among of all the errors of a particular machine tool, the thermal errors of the spindle have a notably significant effect on machining accuracy and have a direct influence upon both the surface finish and geometric shape of the finished workpiece. Therefore, this paper proposed new measurement method for thermal errors of the spindle in machine tools. The thermal errors are measured by a ball bar system instead of capacitance sensor system. The novel measurement method using ball bar system is more efficient, easier to use than conventional measurement system. And also the ball bar system is possible to measure both geometric errors and thermal errors at the same time.

Fractal dimension analysis of machined surface according to machining progress (가공의 진전에 따른 표면의 프랙탈 차원 해석)

  • 최임수;이기용;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.251-254
    • /
    • 1995
  • The quality and functionality of machined products is determined by surface finish. The surface roughness is characterized by roughness parameters such as R $_{a}$ and R $_{max}$. While such parameters are useful to define the quality of surface, they are nor sufficiently descriptive characteristics of surface. The fractal dimension which can describe characteristics od surface roughness than conventional roughness parameters has been applied. In this work, Relation between fractal dimension and surface roughness will be examined as a means of characterizing surface roughness.s.s.

  • PDF

Selection of chip breaker based on the experiment (실험적 방법에 기초한 칩브레이크 선정)

  • 전준용;허만성;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.271-275
    • /
    • 1995
  • Chip control is a major problem in automatic machining process, especially in finish operation. Chip breaker is one of the important factors to be determined for the scheme of chip control. As unbroken chips are grown, there deteriorate quality of the surface roughness and process automation can be carried out. In this study, to get rid of chip curling problem while turning internal hole, optimal chip breaker is selected form the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factor. From the respose table, cutting speed, feedrate, depth of cut, and tool geometry are major factors affecting chip formation. Then, optmal chip breaker is selected and this is verified good enough for chip control from the experiment.

  • PDF

A Study on the Polishing Moving Type and the Cutting Characteristics of Magnetic Polished Tool (자기연마공구의 연마운동방식과 절삭특성에 관한 연구)

  • Jung, Sung-Yong;Yang, Sun-Cheul;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.28-34
    • /
    • 2008
  • Recently, with the development of high speed machining technology for difficult-cutting materials, to improve the cutting performance of cutting tool, fine surface finish of complex shape tools using magnetic polishing technology is in high demand. This study is, therefore, discussed and compared the cutting characteristics of polished tools by the adopted various magnetic polishing moving types a point of view the cutting forces and the tool life. Moreover, the practicality of magnetic polished tools in the wide range cutting conditions is investigated. From obtained results, It is confirmed that the CW(clockwise) revolution and oscillation type as the polishing moving type is proper and magnetic polished tool shows the excellence in high cutting speed range.