• Title/Summary/Keyword: Finger1ho

Search Result 108, Processing Time 0.026 seconds

Evaluation of Nutritional Content and Quality Attributes of Cookies Utilizing Calcium-Enriched Finger Millet Variety (Finger1ho) (칼슘 함량이 높은 손가락조 '핑거1호'와 그 가공품의 영양 및 품질 특성)

  • Ji Ho Choo;Jee-Yeon Ko;Meyong Eun Choe;Ji Young Kim;Byong Won Lee;Young Kwang Ju;Hyoseob Seo;Choon-Song Kim;Sang-Ik Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.422-430
    • /
    • 2023
  • The nutrient-rich and climate-resilient finger millet (Eleusine coracana (L.) Gaertn.) is a relatively new crop on the agricultural landscape. The present study explores the agronomic characteristics and antioxidant activities of grains and cookies produced from 'Finger1ho,' which was the first finger millet variety developed in South Korea. With heightened calcium content (314 mg/100 g) and polyphenol levels, 'Finger1ho' exhibited superior radical scavenging activities compared to other millets. The investigation assessed the impact of whole finger millet flour at varying concentrations (0, 10, 30, 50, and 100%) on cookie properties. Increasing the substitution of finger millet flour in the cookie formulation resulted in a notable rise in calcium content, ranging from 1.8 times at 10% to an impressive 10.8 times at 100%, surpassing the levels found in conventional wheat cookies. Conversely, the sodium (Na) levels in finger millet cookies demonstrated minimal variations, presenting a potentially favorable aspect in addressing the high Na intake prevalent in the South Korean diet. Notably, the antioxidant activity, assessed through ABTS and DPPH radical scavenging assays, exhibited a significant elevation compared to the control. This increase in antioxidant activity was directly proportional to the quantity of finger millet incorporated (p<0.001), indicating the potential health benefits associated with higher levels of finger millet in the cookie formulation. This study highlights finger millet's potential as a beneficial ingredient, enhancing both consumer acceptability and the functional attributes of cookies. Notably, cookies with 10% to 50% added finger millet exhibited significantly superior quality characteristics compared to controls, suggesting promising avenues for health-functional cookie development.

The Ring-H2 Finger Motif of CKBBP1/SAG Is Necessary for Interaction with Protein Kinase CKII and Optimal Cell Proliferation

  • Kim, Yun-Sook;Ha, Kwon-Soo;Kim, Young-Ho;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.629-636
    • /
    • 2002
  • Protein kinase CKII (CKII) is required for progression through the cell division cycle. We recently reported that the $\beta$ subunit of protein kinase CKII ($CKII{\beta}$) associates with CKBBP1 that contains the Ring-H2 finger motif in the yeast two-hybrid system. We demonstrate here that the Ring-H2 finger-disrupted mutant of CKBBP1 does not interact with purified $CKII{\beta}$ in vitro, which shows that the Ring-H2 finger motif is critical for direct interaction with $CKII{\beta}$. The CKII holoenzyme is efficiently co-precipitated with the wild-type CKBBP1, but not with the Ring-H2 finger-disrupted CKBBP1, from whole cell extracts when epitope-tagged CKBBP1 is transiently expressed in HeLa cells. Disruption of the Ring-H2 finger motif does not affect the cellular localization of CKBBP1 in HeLa cells. The increased expression of either the wild-type CKBBP1 or Ring-H2 finger-disrupted CKBBP1 does not modulate the protein or the activity levels of CKII in HeLa cells. However, the stable expression of Ring-H2 finger-disrupted CKBBP1 in HeLa cells suppresses cell proliferation and causes the accumulation of the G1/G0 peak of the cell cycle. The Ring-H2 finger motif is required for maximal CKBBP1 phosphorylation by CKII, suggesting that the stable binding of CKBBP1 to CKII is necessary for its efficient phosphorylation. Taken together, these results suggest that the complex formation of $CKII{\beta}$ with CKBBP1 and/or CKII-mediated CKBBP1 phosphorylation is important for the G1/S phase transition of the cell cycle.

A Study of the Relationships between the Ratio of $2^{nd}$ to $4^{th}$ Digit Length and Cerebral Laterality (제2수지-제4수지 길이 비율과 대뇌 편측화 관계 연구)

  • Kim, Ah-Young;Kim, Seong-Kyun;Youn, Jin-Young;Jeong, Jae-Seung;Lee, Joo-Ho;Chae, Jeong-Ho;Lee, Yu-Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • Objectives : Cerebral laterality is thought to be an important marker for neurodevelopment. Prenatal testosterone could influence both cerebral laterality and 2nd to 4th finger length ratio(2D : 4D). EEG coherence and 2D : 4D were examined to investigate the relationship between prenatal testosterone level and cerebral laterality. Methods : EEG was recorded in 24 healthy subjects in the eyes closed resting state. Differences in 2D : 4D finger ratio were used to discriminate "masculine finger type" and "feminine finger type" groups. The 2D : 4D ratio was lower and greater than one for the "masculine finger type" group and "feminine finger type" group, respectively. We used coherence analysis to estimate the cortical functional connectivity. Results : There were statistically meaningful relationships among cerebral functional connectivity, sex and finger ratio. Man and masculine finger type group showed higher intra-hemispheric coherence than those of woman and feminine finger type group. Woman and feminine finger type group showed higher inter-hemispheric coherence than those of man and masculine finger type group. Conclusions : These results imply that prenatal testosterone might act as important determinants of cerebral laterality. Further examination of the relationship between 2D : 4D and EEG coherence in schizophrenia could give some clues for the neurodevelopmental hypothesis of schizophrenia genesis.

Development of SSR Markers and Their Use in Studying Genetic Diversity and Population of Finger Millet (Eleusine coracana L. Gaertn.)

  • Lee, Kyung Jun;Yoon, Mun-Sup;Shin, Myoung-Jae;Lee, Jung-Ro;Cho, Yang-Hee;Lee, Ho-Sun;Ma, Kyung-Ho;Lee, Gi-An
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • Finger millet (Eleusine coracana L. Gaertn.) is an important cereal crop in eastern Africa and southern India with excellent grain storage capacity and the unique ability to thrive in extreme environmental conditions. In this study, we analyzed the genetic diversity and population structure of finger millet using 12 developed microsatellites. By sequencing 815 clones from an SSR-enriched genomic DNA library, we obtained 12 polymorphic SSR markers, which also revealed successful amplicons in finger millet accessions. Using the developed SSR markers, we estimated genetic diversity and population structure among 76 finger millet accessions in Asia, Africa, and unknown origins. The number of alleles ranged from 2 to 9, with an average of 3.3 alleles. The mean values of observed heterozygosity and expected heterozygosity were 0.27 and 0.35, respectively. The average polymorphism information content was 0.301 in all 76 finger millet accessions. AMOVA analysis showed that the percentage of molecular variance among the populations was 1%, that among individuals was 5%, and that within individuals was 94%. In STRUCTURE analysis, the 76 finger millet accessions were divided into two subpopulations which had an admixture of alleles. There was a correspondence among PCoA, AMOVA, and population structure. This study may form the basis for a finger millet breeding and improvement program.

Case Study of a Patient with Trigger Finger after Conducting Pharmacopuncture according to the Progress

  • Jeong Ho Huh;Dong Heon Lee;Jun Young Lee;Ju Hwa Jeong;Seok Hee Kim;Kyung Jin Lee;Tae Han Yook;Kyeong Han Kim
    • Journal of Pharmacopuncture
    • /
    • v.26 no.1
    • /
    • pp.99-104
    • /
    • 2023
  • Our study purpose was to report the clinical application of five different pharmacopunctures (Sweet BV, Scolopendrae Corpus, Chukyu, Cervi Parvum Cornu, and Hominis Placenta) for trigger finger. A patient was admitted to Ba-reun-mom S Korean Medicine Clinic and diagnosed with trigger finger. Because the effects of each pharmacopuncture have been confirmed in various acute to chronic cases, we treated a patient diagnosed with trigger finger using pharmacopunctures Sweet BV and Scolopendrae Corpus at the acute phase, Chukyu pharmacopuncture at the acute to chronic phase, and pharmacopunctures Cervi Parvum Cornu and Hominis Placenta at the chronic phase. This case was measured and assessed by Quinnell's classification of triggering and visual analogue scale (VAS) scores. After treatment, the patient's fifth finger pain and function were improved. The VAS score decreased from 5 to 0. The Quinnell's classification of triggering score decreased from 2 to 0. This case indicated that a patient with trigger finger could be treated by five pharmacopuncture treatments according to the treatment regimen and disease progress.

Effects of Ultrasound-Guided Acupotomy Therapy on a Trigger Finger: A Case Report

  • Ho Seok Jung;Tae Seong Jeong;Sung Chul Kim;Yeong Jin Jeong;Su Hak Kim;Jinwoong Lim
    • Journal of Acupuncture Research
    • /
    • v.40 no.2
    • /
    • pp.162-166
    • /
    • 2023
  • This study aimed to demonstrate a safe and effective procedure targeting the A1 pulley with ultrasound-guided acupotomy in patients with a trigger finger. Six ultrasound-guided acupotomy procedures were performed on 1 patient. The Numerical Rating Scale (NRS) score, Quinnell's classification of triggering, Tanaka score, and A1 pulley thickness were measured using ultrasonography before and after treatment. This study revealed reduced NRS score, Quinnell's classification of triggering, Tanaka score, and thickness of the A1 pulley, with no side effects during the procedure. This indicates ultrasound-guided acupotomy as an effective and safe treatment method for patients with a trigger finger. Further studies are required to evaluate the beneficial effects of this treatment.

Selective control of multiple devices via finger recognition (다중 디바이스에서 손 인식을 통한 선택적 제어)

  • Chang, Ho-Jung;Kim, Tae-Hyun;Yoon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.60-68
    • /
    • 2014
  • Extensive researches on PC control system via interaction between PC and users are being conducted recently, especially on human finger recognition in the electronic devices. Heretofore, researches on methods to improve the accuracy of finger recognition in a single device and to control the devices with it have been the mainstream, whereas many different industries where finger recognition become more utilized are demanding researches on methods to selectively control the system of multiple devices for applications in various environments and situations. This article demonstrates attempts to selectively control one of two devices through finger recognition. Along with this, experiments conducted with 6 variable conditions are demonstrated here, where the optimal condition to increase the rate of successful selective finger recognition between two devices is studied.

Innervated Cross-Finger Pulp Flap for Reconstruction of the Fingertip

  • Lee, Nae-Ho;Pae, Woo-Sik;Roh, Si-Gyun;Oh, Kwang-Jin;Bae, Chung-Sang;Yang, Kyung-Moo
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.637-642
    • /
    • 2012
  • Background Fingertip injuries involving subtotal or total loss of the digital pulp are common types of hand injuries and require reconstruction that is able to provide stable padding and sensory recovery. There are various techniques used for reconstruction of fingertip injuries, but the most effective method is functionally and aesthetically controversial. Despite some disadvantages, cross-finger pulp flap is a relatively simple procedure without significant complications or requiring special techniques. Methods This study included 90 patients with fingertip defects who underwent cross-finger pulp flap between September 1998 and March 2010. In 69 cases, neurorrhaphy was performed between the pulp branch from the proper digital nerve and the recipient's sensory nerve for good sensibility of the injured fingertip. In order to evaluate the outcome of our surgical method, we observed two-point discrimination in the early (3 months) and late (12 to 40 months) postoperative periods. Results Most of the cases had cosmetically and functionally acceptable outcomes. The average defect size was $1.7{\times}1.5$ cm. Sensory return began 3 months after flap application. The two-point discrimination was measured at 4.6 mm (range, 3 to 6 mm) in our method and 7.2 mm (range, 4 to 9 mm) in non-innervated cross-finger pulp flaps. Conclusions The innervated cross-finger pulp flap is a safe and reliable procedure for lateral oblique, volar oblique, and transverse fingertip amputations. Our procedure is simple to perform under local anesthesia, and is able to provide both mechanical stability and sensory recovery. We recommend this method for reconstruction of fingertip injuries.

A High Resolution Capacitive Single-Silicon Microaccelerometer using High Amplitude Sense Voltage for Application to Personal Information System (고 감지 전압을 이용한 개인 정보기기용 고정도 정전용량형 단결성 실리콘 가속도계)

  • Han, Ki-Ho;Cho, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.53-58
    • /
    • 2001
  • This paper presents a high resolution capacitive microaccelerometer for applications to personal information systems. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-mass based on deep RIE process. We reduce the electrical noise level by increasing the amplitude of an AC sense voltage. The high sense voltage is obtained by DC-to-DC voltage multiplier. In order to solve the nonlinearity problem caused by the high sense voltage, we modify the conventional comb electrode of straight finger type into that of branched finger type, resulting in self force-balancing effects for enhanced detection linearity. The proposed branched finger capacitive microaccelerometer was fabricated by the deep RIE process of an SOI wafer. The fabricated microaccelerometer reduces the electrical noise at the level of $2.4{\mu}g/\sqrt{Hz}$ for the sense voltage of l6.5V, which is 10.1 times smaller than the electrical noise level of $24.3{\mu}g/\sqrt{Hz}$ at 0.9V. For the sense voltage higher than 2V, the electrical noise level of the microaccelerometer became smaller than the constant mechanical noise level of $11{\mu}g/\sqrt{Hz}$. Total noise level, including the electrical noise and the mechanical noise, has been measured as $9{\mu}g/\sqrt{Hz}$ for the sense voltage of 16.5V, which is 3.2 times smaller than the total noise of $28.6{\mu}g/\sqrt{Hz}$ for the sense voltage of 0.9V. The self force-balancing effect results in the increased stiffness of 1.98 N/m at the sense voltage of 17.8V, compared to the stiffness of 1.35 N/m at 0V, thereby generating the additional stiffness at the rate of $0.002N/m/V^{2}$.

  • PDF

Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가)

  • Han, Gi-Ho;Jo, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.