• Title/Summary/Keyword: Finger vein recognition

검색결과 26건 처리시간 0.025초

New Finger-vein Recognition Method Based on Image Quality Assessment

  • Nguyen, Dat Tien;Park, Young Ho;Shin, Kwang Yong;Park, Kang Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권2호
    • /
    • pp.347-365
    • /
    • 2013
  • The performance of finger-vein recognition methods is limited by camera optical defocusing, the light-scattering effect of skin, and individual variations in the skin depth, density, and thickness of vascular patterns. Consequently, all of these factors may affect the image quality, but few studies have conducted quality assessments of finger-vein images. Therefore, we developed a new finger-vein recognition method based on image quality assessment. This research is novel compared with previous methods in four respects. First, the vertical cross-sectional profiles are extracted to detect the approximate positions of vein regions in a given finger-vein image. Second, the accurate positions of the vein regions are detected by checking the depth of the vein's profile using various depth thresholds. Third, the quality of the finger-vein image is measured by using the number of detected vein points in relation to the depth thresholds, which allows individual variations of vein density to be considered for quality assessment. Fourth, by assessing the quality of input finger-vein images, inferior-quality images are not used for recognition, thereby enhancing the accuracy of finger-vein recognition. Experiments confirmed that the performance of finger-vein recognition systems that incorporated the proposed quality assessment method was superior to that of previous methods.

Reflection-type Finger Vein Recognition for Mobile Applications

  • Zhang, Congcong;Liu, Zhi;Liu, Yi;Su, Fangqi;Chang, Jun;Zhou, Yiran;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.467-476
    • /
    • 2015
  • Finger vein recognition, which is a promising biometric method for identity authentication, has attracted significant attention. Considerable research focuses on transmission-type finger vein recognition, but this type of authentication is difficult to implement in mobile consumer devices. Therefore, reflection-type finger vein recognition should be developed. In the reflection-type vein recognition field, the majority of researchers concentrate on palm and palm dorsa patterns, and only a few pay attention to reflection-type finger vein recognition. Thus, this paper presents reflection-type finger vein recognition for biometric application that can be integrated into mobile consumer devices. A database is built to test the proposed algorithm. A novel method of region-of-interest localization for a finger vein image is introduced, and a scheme for effectively extracting finger vein features is proposed. Experiments demonstrate the feasibility of reflection-type finger vein recognition.

Finger Vein Recognition based on Matching Score-Level Fusion of Gabor Features

  • Lu, Yu;Yoon, Sook;Park, Dong Sun
    • 한국통신학회논문지
    • /
    • 제38A권2호
    • /
    • pp.174-182
    • /
    • 2013
  • Most methods for fusion-based finger vein recognition were to fuse different features or matching scores from more than one trait to improve performance. To overcome the shortcomings of "the curse of dimensionality" and additional running time in feature extraction, in this paper, we propose a finger vein recognition technology based on matching score-level fusion of a single trait. To enhance the quality of finger vein image, the contrast-limited adaptive histogram equalization (CLAHE) method is utilized and it improves the local contrast of normalized image after ROI detection. Gabor features are then extracted from eight channels based on a bank of Gabor filters. Instead of using the features for the recognition directly, we analyze the contributions of Gabor feature from each channel and apply a weighted matching score-level fusion rule to get the final matching score, which will be used for the last recognition. Experimental results demonstrate the CLAHE method is effective to enhance the finger vein image quality and the proposed matching score-level fusion shows better recognition performance.

새로운 정합 알고리즘을 이용한 손가락 정맥 인식 방법 (A Method for Finger Vein Recognition using a New Matching Algorithm)

  • 김희승;조준희
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권11호
    • /
    • pp.859-865
    • /
    • 2010
  • 이 논문에서 손가락 정맥영상에 대한 새로운 인식 방법을 제시한다. 손가락 정맥인식은 대중적으로 사용되고 있는 지문인식의 위조가능성을 배제할 수 있고, 홍채인식의 불편한 영상획득 방식을 피할 수 있는 좋은 개인 인중 방편으로 주목 받고 있다. 손가락 정맥영상을 지역적 히스토그램 균등화에 의하여 전처리하고, 이것을 세선화 처리하여 선 형태의 정맥을 얻는다. 이렇게 얻어진 선 형태의 정맥선 영상에 HS정합 알고리즘(HeeSung's Matching Algorithm) 이라고 명명된 새로운 정합 알고리즘을 적용하여 정맥의 정합 여부를 가린다. 이 새로운 정합 알고리즘은 세선화나 에지 검출 처리한 여러 가지 선 모양의 영상인식에 좋은 효과를 보이고 있다. 개인당 5편씩 총 130명분 650편의 손가락 영상에 대한 인식실험 결과 99.20%의 인식률을 보였다. 한 쌍의 영상 정합처리에 단 60ms 의 처리 속도를 보였다.

지정맥 인식을 위한 특징 검출 알고리즘 개발 (Development of Feature Extraction Algorithm for Finger Vein Recognition)

  • 김태훈;이상준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권9호
    • /
    • pp.345-350
    • /
    • 2018
  • 본 연구는 지정맥 인식에 중요한 정맥 패턴 특징검출을 위한 알고리즘이다. 특징검출 알고리즘은 패턴인식 시 인식결과에 많은 영향을 끼치므로 중요하다. 인식률은 손가락 위치 변화에 따라 기준도 변화되므로 저하되는 특징을 가지고 있다. 또한, 손가락에 적외선 광을 조사하여 획득한 영상은 영상 배경과 혈관 패턴을 분리하기에 어렵고, 영상 전처리과정을 수행하므로 검출시간이 증대되는 특징을 가지고 있다. 이를 위해, 제시하는 알고리즘은 영상 전처리과정이 없이 수행되어 검출 시간을 줄일 수 있고, 지정맥 영상에 SWDA(Shifted Waveform Data Analysis) 알고리즘을 적용하여 손가락 마디 위치 및 정맥 패턴 검출이 가능한 특징을 가지고 있다. 적외선 투과율이 낮아 상대적으로 어두운 정맥 영상도 검출 오류 최소화가 가능한 특징을 보였다. 또한, 손가락 마디 위치는 분류 단계에서 기준으로 활용하면 인식률 저하를 보완할 수 있는 특징을 가지고 있다. 추후 손바닥, 손목 등 신체 여러 인식분야에 제안하는 알고리즘을 적용한다면 생체 특징 검출 정확도 향상 및 인식 수행 시간 감소에 기여할 것으로 기대된다.

지정맥 인식을 위한 ROI 검출과 정맥 증강처리 (ROI Extraction and Enhancement for Finger Vein Recognition)

  • 이주원;이병로
    • 한국정보통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.948-953
    • /
    • 2015
  • 최근, 생체 정보를 이용하여 개인의 신원을 확인하기 위해 근적외선 LED와 CCD 카메라를 이용한 지정맥 인식기술 연구되고 있다. 지정맥 인식은 손가락의 두께, 주변 광, 체온카메라 등의 잡음으로부터 정맥과 배경 이미지를 분리하는 방법에 따라 성능의 차이가 발생한다. 이러한 문제점을 개선하기 위해 본 연구에서는 NIR LED와 CCD 카메라로 촬영된 지정맥 영상으로부터 지정맥 회전, ROI 검출, 필터뱅크를 이용한 정맥 증강 기법을 제안하고 실험을 통하여 그 성능을 평가하였다. 이 실험의 결과에서 제안된 지정맥 회전과 ROI 검출의 정확도가 99.8%를 보였다. 그리고 필터뱅크를 이용한 정맥 증강처리에서는 제안된 방법이Retinex 알고리즘 보다 우수한 대비 성능을 보였다. 이 실험의 결과로부터 제안된 방법을 정맥인식의 전처리 과정에 적용한다면, 보다 나은 인식률을 제공할 것으로 사료된다.

지정맥 인식을 위한 고속 지정맥 영역 추출 방법 (Fast Detection of Finger-vein Region for Finger-vein Recognition)

  • 김성민;박강령;박동권;원치선
    • 대한전자공학회논문지SP
    • /
    • 제46권1호
    • /
    • pp.23-31
    • /
    • 2009
  • 최근 출입통제, 금융보안 및 전자여권 등 다양한 분야에서 얼굴인식, 지문인식, 홍채인식 등과 같은 생체인식기술의 적용이 활발히 이루어지고 있다. 또한 최근에는 손가락의 지정맥 패턴정보를 이용하여 개인을 인증하는 연구 역시 활발히 진행 중이다. 일반적으로 획득된 지정맥 영상은 손가락의 두께에 따른 적외선 빛의 투과도 및 카메라의 센서 잡음으로 인하여 정맥과 배경 분리에 많은 어려움이 있다. 이를 해결하기 위하여 본 논문에서는 고속으로 지정맥 영역을 추출하기 위한 새로운 방법을 제안한다. 본 연구는 기존의 방법에 비해 다음과 같은 2가지 장점을 가지고 있다. 첫째, 획득된 지정맥 영상에 적응적 지역 이진화 방법을 적용하여 지정맥 영역을 분리하였다. 둘째, 분리된 영상의 잡음을 열림 및 닫힘 연산을 이용하여 제거하고 최종적으로 골격화하여 지정맥 영역을 추출하였다. 실험결과, 기존의 방법들에서는 영상 잡음을 제거하기 위해 많은 필터를 사용하였으나 제안한 방법에서는 필터를 많이 사용하지 않으면서도 고속으로 정확하게 지정맥 영역을 추출할 수 있음을 보였다.

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

손가락 정렬과 회전에 강인한 비 접촉식 손가락 정맥 인식 연구 (A Study on Touchless Finger Vein Recognition Robust to the Alignment and Rotation of Finger)

  • 박강령;장영균;강병준
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.275-284
    • /
    • 2008
  • 최근 개인의 정보 보호에 대한 중요성이 증가함에 따라 생체 인식 기술이 출입 통제 시스템 또는 개인 인증, 인터넷 뱅킹, ATM 기기 등 여러 응용에서 사용되어지고 있다. 손가락 정맥 인식이란 사람마다 고유한 손가락 정맥 패턴 정보를 사용하는 고 신뢰도의 생체 인식 기술이다. 본 연구에서는 비 접촉식 손가락 정맥 인식을 위한 새로운 장치 및 방법을 제안한다. 본 연구는 기존의 연구에 비해 다음과 같은 다섯 가지의 장점을 나타내고 있다. 첫째, 본 논문에서 제안하는 장비는 사용자의 손가락 정맥영상 취득 시, 손가락의 뒷면과 손가락 끝, 옆을 지지할 수 있는 최소한의 지지대만을 사용함으로써 사용자의 불쾌감을 최소화할 수 있다. 둘째, 손가락 정맥 영상을 취득하기 위한 카메라 앞에 45도 기울어진 핫 미러(hot mirror)를 사용함으로써, 손가락 정맥 영상 취득 장치의 두께를 줄일 수 있었다. 이는 핸드폰과 같이 두께에 제한이 있는 여러 응용 분야에서 널리 사용될 수 있음을 의미한다. 셋째, 본 연구에서는 LBP(Local Binary Pattern) 방법을 기반으로 손가락 정맥의 특징 정보를 추출함으로써 부분적으로 심하게 어둡거나 밝은 영역을 포함하는 균일하지 않은 조명의 영향을 줄일 수 있었다. 넷째, 비 정맥 영역을 인식에 사용하지 않음으로써 인식 성능을 보다 향상 할 수 있었다. 다섯째, 추출된 손가락 정맥 코드를 기 등록된 코드와 매칭 시, 수평 및 수직방향 비트 이동 방법을 사용함으로써 영상 취득 시 손가락의 움직임과 회전에 의한 본인데이터의 변화도를 줄일 수 있었다. 실험 결과, 본 논문에서 제안하는 손가락 정맥 인식방법의 EER(Equal Error Rate)은 0.07423%였고 전체 처리 시간은 91.4ms였다.

Finger Vein Recognition Using Generalized Local Line Binary Pattern

  • Lu, Yu;Yoon, Sook;Xie, Shan Juan;Yang, Jucheng;Wang, Zhihui;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1766-1784
    • /
    • 2014
  • Finger vein images contain rich oriented features. Local line binary pattern (LLBP) is a good oriented feature representation method extended from local binary pattern (LBP), but it is limited in that it can only extract horizontal and vertical line patterns, so effective information in an image may not be exploited and fully utilized. In this paper, an orientation-selectable LLBP method, called generalized local line binary pattern (GLLBP), is proposed for finger vein recognition. GLLBP extends LLBP for line pattern extraction into any orientation. To effectually improve the matching accuracy, the soft power metric is employed to calculate the matching score. Furthermore, to fully utilize the oriented features in an image, the matching scores from the line patterns with the best discriminative ability are fused using the Hamacher rule to achieve the final matching score for the last recognition. Experimental results on our database, MMCBNU_6000, show that the proposed method performs much better than state-of-the-art algorithms that use the oriented features and local features, such as LBP, LLBP, Gabor filter, steerable filter and local direction code (LDC).