• Title/Summary/Keyword: Finger detection

Search Result 95, Processing Time 0.027 seconds

A Method for Finger Vein Recognition using a New Matching Algorithm (새로운 정합 알고리즘을 이용한 손가락 정맥 인식 방법)

  • Kim, Hee-Sung;Cho, Jun-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.11
    • /
    • pp.859-865
    • /
    • 2010
  • In this paper, a new method for finger vein recognition is proposed. Researchers are recently interested in the finger vein recognition since it is a good way to avoid the forgery in finger prints recognition and the inconveniences in obtaining images of the iris for iris recognition. The vein images are processed to obtain the line shaped vein images through the local histogram equalization and a thinning process. This thinned vein images are processed for matching, using a new matching algorithm, named HS(HeeSung) matching algorithm. This algorithm yields an excellent recognition rate when it is applied to the curve-linear images processed through a thinning or an edge detection. In our experiment with the finger vein images, the recognition rate has reached up to 99.20% using this algorithm applied to 650finger vein images(130person ${\times}$ 5images each). It takes only about 60 milliseconds to match one pair of images.

Upper Limb Motion Detection Including Fingers Using Flex Sensors and Inertial Sensors (휘어짐센서와 관성센서를 이용한 손가락을 포함한 상지 운동 검출)

  • Kim, Yeon-Jun;Yoo, Jae-Ha;Kim, Dong-Yon;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.101-106
    • /
    • 2020
  • The utilization of virtual reality is increasing not only in games but also in medical care such as rehabilitation. Due to the convenience, the motion of the upper limb is detected using a non-contact method using video or a handheld type mouse, etc. In this paper, we implemented a glove which can measure finger movements and upper limb movements by using flex sensors whose resistance value changes according to the degree of folding and inertial sensors which can obtain direction information in space. We showed the upper arm movements including finger movements with signals obtained from the implemented glove on the open software platform, Processing. The sensitivity of each finger movement was 0.5deg, and the sensitivity of the upper limb motion was 0.6deg.

Fast Detection of Finger-vein Region for Finger-vein Recognition (지정맥 인식을 위한 고속 지정맥 영역 추출 방법)

  • Kim, Sung-Min;Park, Kang-Roung;Park, Dong-Kwon;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2009
  • Recently, biometric techniques such as face recognition, finger-print recognition and iris recognition have been widely applied for various applications including door access control, finance security and electric passport. This paper presents the method of using finger-vein pattern for the personal identification. In general, when the finger-vein image is acquired from the camera, various conditions such as the penetrating amount of the infrared light and the camera noise make the segmentation of the vein from the background difficult. This in turn affects the system performance of personal identification. To solve this problem, we propose the novel and fast method for extracting the finger-vein region. The proposed method has two advantages compared to the previous methods. One is that we adopt a locally adaptive thresholding method for the binarization of acquired finger-vein image. Another advantage is that the simple morphological opening and closing are used to remove the segmentation noise to finally obtain the finger-vein region from the skeletonization. Experimental results showed that our proposed method could quickly and exactly extract the finger-vein region without using various kinds of time-consuming filters for preprocessing.

Implementation of Gesture Interface for Projected Surfaces

  • Park, Yong-Suk;Park, Se-Ho;Kim, Tae-Gon;Chung, Jong-Moon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.378-390
    • /
    • 2015
  • Image projectors can turn any surface into a display. Integrating a surface projection with a user interface transforms it into an interactive display with many possible applications. Hand gesture interfaces are often used with projector-camera systems. Hand detection through color image processing is affected by the surrounding environment. The lack of illumination and color details greatly influences the detection process and drops the recognition success rate. In addition, there can be interference from the projection system itself due to image projection. In order to overcome these problems, a gesture interface based on depth images is proposed for projected surfaces. In this paper, a depth camera is used for hand recognition and for effectively extracting the area of the hand from the scene. A hand detection and finger tracking method based on depth images is proposed. Based on the proposed method, a touch interface for the projected surface is implemented and evaluated.

High-resolution Capacitive Microaccelerometers using Branched finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계)

  • 한기호;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • This paper presents a navigation garde capacitive microaccelerometer, whose low-noise high-resolution detection capability is achieved by a new electrode design based on a high-amplitude anti-phase sense voltage. We reduce the mechanical noise of the microaccelerometer to the level of 5.5$\mu\textrm{g}$/(equation omitted) by increasing the proof-mass based on deep RIE process of an SOI wafer. We reduce the electrical noise as low as 0.6$\mu\textrm{g}$/(equation omitted) by using an anti-phase high-amplitude square-wave sense voltage of 19V. The nonlinearity problem caused by the high-amplitude sense voltage is solved by a new electrode design of branched finger type. Combined use of the branched finger electrode and high-amplitude sense voltage generates self force-balancing effects, resulting in an 140% increase of the bandwidth from 726㎐ to 1,734㎐. For a fixed sense voltage of 10V, the total noise is measured as 2.6$\mu\textrm{g}$/(equation omitted) at the air pressure of 3.9torr, which is the 51% of the total noise of 5.1$\mu\textrm{g}$/(equation omitted) at the atmospheric pressure. From the excitation test using 1g, 10㎐ sinusoidal acceleration, the signal-to-noise ratio of the fabricated microaccelerometer is measured as 105㏈, which is equivalent to the noise level of 5.7$\mu\textrm{g}$/(equation omitted). The sensitivity and linearity of the branched finger capacitive microaccelerometer are measured as 0.638V/g and 0.044%, respectively.

Development of Photo-sensor for Integrated Lab-On-a-Chip (집적화된 Lab-On-a Chip을 위한 광센서의 제작 및 특성 평가)

  • 김주환;신경식;김용국;김태송;김상식;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.404-409
    • /
    • 2004
  • We fabricated photo-sensor for fluorescence detection in LOC. LOC is high throughput screening system. Our LOC screens biochemical reaction of protein using the immunoassay, and converts biochemical reaction into electrical signal using LIF(Laser Induced Fluorescence) detection method. Protein is labeled with rhodamine intercalating dye and finger PIN photodiode is used as photo-sensor We measured fluorescence emission of rhodamine dye and analyzed tendency of fluorescence detection, according to photo-sensor size, light intensity, and rhodamine concentration. Detection current was almost linearly proportional to two parameters, intensity and concentration, and was inversely proportional to photo-sensor size. Integrated LOC consists of optical-filter deposited photo-sensor and PDMS microchannel detected 50 (pg/${mu}ell$) rhodamine. For integrated LOC including light source, we used green LED as the light source and measured emitted fluorescence.

Virtual core point detection and ROI extraction for finger vein recognition (지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The finger vein recognition technology is a method to acquire a finger vein image by illuminating infrared light to the finger and to authenticate a person through processes such as feature extraction and matching. In order to recognize a finger vein, a 2D mask-based two-dimensional convolution method can be used to detect a finger edge but it takes too much computation time when it is applied to a low cost micro-processor or micro-controller. To solve this problem and improve the recognition rate, this study proposed an extraction method for the region of interest based on virtual core points and moving average filtering based on the threshold and absolute value of difference between pixels without using 2D convolution and 2D masks. To evaluate the performance of the proposed method, 600 finger vein images were used to compare the edge extraction speed and accuracy of ROI extraction between the proposed method and existing methods. The comparison result showed that a processing speed of the proposed method was at least twice faster than those of the existing methods and the accuracy of ROI extraction was 6% higher than those of the existing methods. From the results, the proposed method is expected to have high processing speed and high recognition rate when it is applied to inexpensive microprocessors.

Enhanced Vein Detection Method by Using Image Scaler Based on Poly Phase Filter (Poly Phase Filter 기반의 영상 스케일러를 이용한 개선 된 정맥 영역 추출 방법)

  • Kim, HeeKyung;Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.734-739
    • /
    • 2018
  • Fingerprint recognition and iris recognition, which are one of the biometric methods, are easily influenced by external factors such as sunlight. Recently, finger vein recognition is used as a method utilizing internal features. However, for accurate finger vein recognition, it is important to clearly separate vein and background regions. However, it is difficult to separate the vein region and background region due to the abnormalized illumination, and a method of separating the vein region and the background region after normalized the illumination of the input image has been proposed. In this paper, we proposed a method to enhance the quality improvement and improve the processing time compared to the existing finger vein recognition system binarization and labeling method of the image including the image stretching process based on the existing illumination normalization method.

Application of OLED as the Integrated Light source for the Portable Lab-On-a-Chip (휴대형 랩온어칩을 위한 집적화 광원으로의 OLED 적용)

  • Kim, Ju-Hwan;Shin, Kyeong-Sik;Kim, Young-Min;Kim, Yong-Kook;Yang, Yeun-Kyeong;Kim, Tae-Song;Kang, Ji-Yoon;Kim, Sang-Sig;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.193-197
    • /
    • 2004
  • The organic light emitting diode (OLED) is proposed as the novel source in the microchip because it has ideal merits (various wavelengths, thin-film structure and overall emitting) for the integration. In this paper, we fabricated the finger-type pin photodiodes for fluorescence detection and the advanced microchip with OLED integrated pn the microchannel. The finger-type in the diode design extended the depletion region and reduced the internal resistance about 31.2% than rectangular-type. The photodiodes had a 100pA leakage current and a 8720 sensitivity $(I_{Light}/I_{Dark})$ at -1 V bias. The interference filter with 32 layers ($SiO_2$, $TiO_2$) was directly deposited on the photodiode. The OLED was fabricated on the ITO coated glass and was bonded with LOC. The application of thin-film OLED increased the excitation efficiency and simplified the integration process extremely. The prototype device of this application had a superior sensitivity of 100nM-LOD in the fluorescence detection.

  • PDF

A study on Prevent fingerprints Collection in High resolution Image (고해상도로 찍은 이미지에서의 손가락 지문 채취 방지에 관한 연구)

  • Yoon, Won-Seok;Kim, Sang-Geun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.19-27
    • /
    • 2020
  • In this study, Developing high resolution camera and Social Network Service sharing image can be easily getting images, it cause about taking fingerprints to easy from images. So I present solution about prevent to taking fingerprints. this technology is develop python using to opencv, blur libraries. First of all 'Hand Key point Detection' algorithm is used to locate the hand in the image. Using this algorithm can be find finger joints that can be protected while minimizing damage in the original image by using the coordinates of separate blurring the area of fingerprints in the image. from now on the development of accurate finger tracking algorithms, fingerprints will be protected by using technology as an internal option for smartphone camera apps from high resolution images.