• Title/Summary/Keyword: Fineness modulus

Search Result 79, Processing Time 0.025 seconds

Effect of Fineness Modulus of Reactive Aggregate on Alkali Silica Reaction

  • Jun, Ssang-Sun;Jin, Chi-Sub
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2010
  • In this study, the effects of the fineness modulus of reactive aggregate on ASR expansion and ASR products have been investigated. The reactive aggregate used was metamorphic aggregate originated from Korea. ASR tests were conducted according to accelerated mortar bar test. The morphology and chemical composition of products formed in mortar bars, 5 years after the mortar bar test had been performed, were studied by scanning electron microscopy equipped with energy dispersive spectroscopy. Test results indicated that ASR expansion of mortar bars decrease in linear proportion to the fineness modulus of reactive aggregate. SEM images indicated that mortar bars showed reactive products formed in cement paste, within air voids and within cracks through particles except for the mortar bar with the fineness modulus of 3.25. The EDS analysis of the reactive products showed presence of silica, calcium and sodium, typical of ASR product composition.

The Effect on the Properties of Concrete by Fine Aggregate Fineness Modulus and Grain Shape of Coarse Aggregate (잔골재 조립율 및 굵은골재 입형이 콘크리트의 특성에 미치는 영향)

  • 정용욱;윤용호;이승한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.102-105
    • /
    • 2003
  • The purpose of this study is to examine the influence of the flowability and the compressive strength of concrete after the improving of grain shape of the coarse aggregate and fine aggregate fineness modulus. According to the experimental results, the coarse aggregate after improvement of grain shape it lead to be down by 6% fine aggregate ratio, from 47% to 41%. The 0.5% increase of fine aggregate fineness modulus lead to 3% increase of concrete slump, and 1% reduction of concrete air content. While compressive strength on fine aggregate fineness modulus, it was increased until fineness modulus 3.0, but after it reached by 3.5 it was decreased. The compressive strength of the coarse aggregate after improving the grain shape was decreased by 6% due to loss of the adhesion of cement paste.

  • PDF

The Influence of Fineness Modulus of Pine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete (잔골재 조립률 및 굵은골재 입형이 초유동 콘크리트의 특성에 미치는 영향)

  • Jung Yong-Wook;Lee Seung-han;Yun Yong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.785-792
    • /
    • 2005
  • This study is to examine the influence of defective grain shape of coarse aggregate and lowered fineness modulus of fine aggregate on the characteristics of high flowing concrete. The flow ability and compact ability of high flowing concrete was examined using fine aggregate, varying its fineness modulus to 2.0, 2.5, 3.0, and 3.5, and coarse aggregate with before and after grain shape improvement. Also the influence of fineness modulus of fine aggregate and grain shape of coarse aggregate on dispersion distance of particles of aggregate was examined by relatively comparing the dispersion distance between particles of aggregate. According to the experimental result, minimum porosity when mixing fine aggregate and coarse aggregate was shown in order of fineness modulus of fine aggregate, 3.0, 2.5, 2.0, 3.5, regardless of the improvement of grain shape. So when the fineness modulus is bigger or smaller than KS Standard $2.3\~3.1$, the porosity increased. When the spherical rate of the grain shape of coarse aggregate unproved from 0.69, a disk shape to 0.78 sphere shape, the rate of fine aggregate, which represents minimum porosity, decreased $6\%$ from $47\%\;to\;41\%$. The 28 days compressive strength according to fineness modulus of fine aggregate increased about 3 ma as the fineness modulus increased from 2.0 to 2,5, and 3.0. However, the 28 days compressive strength decreased about 9 ma at 3.5 fineness modulus as compared with 3.0 fineness modulus. The improvement of grain shape in coarse aggregate and increase of fineness modulus in fine aggregate made the flow ability, compact ability, and V-rod flowing time improve. Also the fineness modulus of fine aggregate increased the paste volume ratio when a higher value was used within the scope of KS Standard $2.3\~3.1$.

A Study on the Material Properties of Concrete Using Crushed Sand (부순모래를 사용한 콘크리트의 물성에 관한 연구)

  • 윤용호;정용욱;이승한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.106-111
    • /
    • 2003
  • This paper is to investigate the characteristics of a concrete in which river sand is partially substituted with crushed sand. Since river sand has a relatively small fineness modulus, there is a need to increase the fineness modulus of sand used in the manufacture of concrete. In an experiment, it was observed that when river sand had a fineness modulus of 2.0~2.4 and crushed sand had a fineness modulus of 2.8~3.5, the substitution rate of the crushed sand was preferably within the range of 25~50%. The experimental results also revealed that as the substitution rate of the crushed sand increased, the flowability of the concrete tended to increase. However, when the substitution rate of the crushed sand reached 75% or more, the workability of the concrete was considerably poor. Further, as the substitution rate of the crushed sand increased, the air content and the bleeding rate of the concrete were low.

  • PDF

The Effect of Fine Aggregate Fineness modulus on Properties High Performance Concrete (잔골재 조립율이 고성능콘크리트의 특성에 미치는 영향)

  • Lee Seung-Han;Jung Yong-Wook;Park Tae-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.388-391
    • /
    • 2004
  • This research investigates how the fineness modulus of fine aggregates and the grain shape of coarse aggregates affects flow characteristics, packing characteristics and compressive strength characteristic. The experimental results, show that increase of the fine aggregate's fineness modulus improved concrete flow, but filling ability was high at over KS regulation extent due to segregation phenomena. It is considered that the improvement of 0.1 spherical rate was effective to concrete fluidity elevation by reducing about $6\%$ of fine aggregate ratio displays which the smallest gap rate of aggregate. Compressive strength was increased to about 0.6MPa everytime F.M. 0.1 of fine aggregate fineness is increased. However, it was decreased to about 9MPa at F.M. 3.5 compared to F.M. 3.0.

  • PDF

An Experimental Study on the mechanical and Shrinkage Properties of Concrete Using High Fineness Fly ash (고분말도 플라이애쉬를 사용한 콘크리트의 역학 및 수축특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Bae, Pil-Sik;Kim, Sung-Soo;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.725-728
    • /
    • 2008
  • This study was to establish 3 levels of high fineness fly ash like 4000, 6000, and 8000 class and 30% replacement ratio in order to analyze mechanics and shrinkage properties of concrete by using high fineness fly ash. Furthermore, this study was to make a plan in two levels of water-binder ratio like 40% and 50%. In addition, as a result of measurement by the establishment of combined condition of ternary system as 20% replacement ratio level of three sorts of ground granulated blast furnace slag, there was a tendency to be equal or higher to the plain concrete as the fineness of fly ash increased in strength property. Simultaneously, this study had a tendency in the relationship between the compressive strength and elastic modulus that the more the fineness of fly ash, the more the elastic modulus increased a little. In addition, this study had a tendency that the more elastic modulus moved to the long-term aged one, the more it increased definitely. The effect on the fineness of fly ash remained at a low level in the drying shrinkage. This study has shown that the more the fineness increased, the more the elastic modulus decreased.

  • PDF

Influences of Grading and Grade Shape in Aggregates on the Strength and Absorption of Cement Mortar Products (골재의 입도 및 입형이 제품용 시멘트 모르타르의 강도 및 흡수율에 미치는 영향)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The quality of cement mortar products largely depends on various work conditions, specially on the grading and grade shape of aggregates. However, the effect of grading and grade shape on the quality is not considered by both KS codes and production processes, resulting in the increase of the possibility of quality degradation. The objective of this study was to investigate the effect of grading and grade shape on the strength and absorption characteristics of cement mortar products. Flexural and compressive strength increased with the increase of fineness modulus and W/C. The strength increase was measured larger with river sand than with crushed sand. Absorption tended to decrease with the increase of fineness modulus and W/C, but did not affected by the source of sand.

A Fundamental Study on the Measurement of Fineness Modulus Using CNN-based Deep Learning Model (CNN기반의 딥러닝 모델을 활용한 잔골재 조립률 예측에 관한 기초적 연구)

  • Lim, Sung-Gyu;Yoon, Jong-Wan;Pack, Tae-Joon;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.50-51
    • /
    • 2021
  • Recently, as concrete is used in many construction works in Korea, the use of aggregates is also increasing. However, the depletion of aggregate resources is making it difficult to supply and demand high-quality aggregates, and the use of defective aggregates is causing problems such as poor performance such as the liquidity and strength of concrete pouring out in the field. As a result, quality tests such as sieve analysis test is conducted on their own, but this study was conducted to improve time and manpower by using the CNN-based Deep Learning Model for the fineness modulus.

  • PDF

Experimental study on pullout performance of structural fiber embedded in cement composites according to fineness modulus of fine aggregate (시멘트 복합체에 근입된 숏크리트용 구조 섬유의 잔골재 조립률에 따른 인발성능 비교)

  • Choi, Chang-Soon;Lee, Sang-Don;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.317-326
    • /
    • 2022
  • This research performed single fiber pull-out test to evaluate the effect between fineness modulus of cement composites and the fiber bond performance (bond strength and pull-out energy). A synthetic fiber (polypropylene) and a steel fiber (hooked ends type) were inserted in the middle of dog bone shape specimens which were designed with fine aggregates of F. M. 1.96, 2.69, 3.43. The experiment results showed bond strength and pullout energy of synthetic fiber are improved as fineness modulus of cement composites increases. It is considered that the frictional resistance between synthetic fiber and cement composite increases as fineness modulus of cement composite increases and consume more energy while pull out the fiber from cement composite. However bond performance of steel fiber which resist pull out by mechanical behavior is less effected on fineness modulus of cement composite. It is considered that the mechanical fixedness of hooked ends exerts a greater effect on the pullout resistance than the frictional resistance between the cement composite and the steel fiber so F. M. of fine aggregate has a relatively small effect on the pullout resistance with the steel fiber.

The Properties of Inter-Locking Block with the Variation of Particle Grading and Shape of Aggregate (골재의 입도와 입형 변화에 따른 인터로킹 블록의 특성)

  • 이상태;김기철;신병철;김진선;권상준;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.661-664
    • /
    • 1998
  • In this paper, the properties of inter-lacking block by the kind of aggregate and fineness modulus are investigated. According to the experimental results, compressive strength and flexural strength increase and absorption ratio decrease with larger fineness modulus in the range of 2.15~4.20. Flexural strength with river sand is higher than that with crushed sand by about 19%, compressive strength with river sand, that with crushed sand by about 11% and absorption ratio with river sand is smaller than that with crushed sand by abort 2%.

  • PDF