• Title/Summary/Keyword: Fine sandy loam

Search Result 36, Processing Time 0.022 seconds

Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field (논에서 전환한 포도원의 토양물리적 특성변화)

  • Yun, Eul-Soo;Jung, Ki-Youl;Park, Ki-Do;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.145-151
    • /
    • 2009
  • This study was conducted to develop rational soil management and enhance the productivity of lands converted from paddy soils. Specifically, the changes in the soil physical properties brought about by the change in land usage from paddy soil were evaluated. This was carried out from 1999 to 2001 at 50 site in large-scale converted paddy fields of Kimcheon, Youngcheon, Gyeongsan and Milyang in the Youngnam region, categorized according to soil texture and drainage class. The ridge height of converted paddy soils was higher in coarse-textured and poorly-drained soils than in fine-textured and well-drained soils. The gray color of the surface soil was of lesser degree in converted soils than paddy soils and more notable in welldrained soils. The porosity ratio and the formation of aggregate structure were higher, and the appearance of soil mottling was deeper in converted paddy fields than in paddy soils. The glaying layer "g" of surface soil degraded with time. The porosity and amount of water stable aggregate was found to increase with time after conversion. The penetration resistance of the converted paddy soil was lower and deeper with time after conversion. The soil aeration of the converted paddy soil was lower in sandy loam than in loamy soil. Furthermore, soil aeration was influenced by ridge height and drainage class in poorly-drained soils.

Soil Physical and Chemical Properties of Forest-Fired Area in Koseong, Kangwon (강원도 고성 산화지역의 토양 이화학성 변화)

  • Nam, Yi;Min, Ell-Sik;Jang, In-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • This research has been done to investigate influence of soil physical and chemical properties on forest environmental change by fired pine forest in Koseong, Kangwondo. The sample sites were divided by not-fired sites(NF), not-cutting site after fired(FNC), cutting and planting sites after fired(FCP) and cutting and not-planting sites after fired(FC). Soil texture of whole sites was sandy clay loam. Sand content of NF top soil were lower than those of sub soil and clay content were higher, while FNC, FCP and FC sand content of top soil were higher than those of sub soil. Total porosity didn't differ between the sites. Coarse porosity and permeability had the increasing order as NF> FNC> FCP> FC, but fine porosity and bulk density had the opposite trends. Because forest fire removed the vegetation and then soil erosion was accelerated, forest environmental changes by forest fire greatly degraded soil porosity and permeability which were indices for forest water retention, so that soil physical properties were deteriorated. Both top and sub soil pHs of NF and FNC were higher than those of FCP and FC. Organic matter content and total nitrogen content of top and sub soils were high in order as NF> FNC> FCP> FC. Cation exchange capacities and exchangeable cation(K+, Na+, $Ca^2$+, $Mg^2$+) content in top soils were higher than those in sub soils, and in order as NF> FNC> FCP> FC, to be compared by the sites. Those mean that forest fire result from the erosion of top soil layers.

  • PDF

Effect of Paddy-upland Rotation System on Soil Chemical Properties and Rice Yield (답전윤환형태별(畓田輪換形態別) 토양화학성(土壤化學性)과 수도생산성(水稻生産性) 변화(變化)에 관(關)한 연구(硏究))

  • Ahn, Sang-Bae;Motomatsu, T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.181-188
    • /
    • 1993
  • The effects of paddy-upland rotation and cropping system on the mineralization of soil organic nitrigen, on the change of organic matter and available phosphorus content in the soil, and on the rice yield and nutrients absorption were studied in Seokcheon fine-sandy loam soil. 1. In the incubation test mineralzed soil nitrogen and the nitrogen extracted by pH 7 phosphate buffer solutions were higher in the soils from every and two year rotation systems than continuous rice cultivation. In terms of cropping system potato-chiness cabbage-rice increased them more than soybean-rice system. 2. The change of soil organic matter and available phosphorus contents were not much in continuous rice cultivation, while in rotation system they decreased as the paddy-upland rotation frequency decreased. In terms of cropping system they decresed more in potato-Chinese cabbage-rice system compared with soybean-rice systems. 3. The rice yield was higher in the paddy-upland rotation system than that of continuous rice cultivation. However, the effects were decreased gradually every year, as shown by 26~20, 17~5, and 5~4% yield increase for first, second, and third year, respectively, in potato-Chinese cabbage-rice and soybean-rice system compared with continuous rice cultivation. 4. All the absorbed nutrient contents increased in every and two year rotation system compared with continuous rice cultivation. In terms of cropping system potato-Chiness cabbage-rice system increased them more compared with soybean-rice system.

  • PDF

Analysis of Soil Erodibility Potential Depending on Soil and Topographic Condition - A Case Study of Ibang-myeon, Changnyeong-gun, Kyungsangnam-do, South Korea- (토양 및 지형 조건에 따른 토양침식 잠재성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Park, In-Hwan;Jang, Gab-Sue;Lee, Geun-Sang;Seo, Dong-Jo
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Changes in the soil physical property and the topographic condition derived from agricultural activities like as farming activities, land clearance and cutting down resulted in environmental and economic problems including the outflow of nutrient from farms and the water pollution. Several theories on the soil conservation have been developed and reviewed to protect soil erosion in the regions having a high risk of erosion. This study was done using the USLE model developed by Wischmeier and Smith (1978), and model for the slope length and steepness made by Desmet and Govers (1996), and Nearing (1997) to evaluate the potential of the soil erodibility. Therefore, several results were obtained as follows. First, factors affecting the soil erosion based on the USLE could be extracted to examine the erosion potential in farms. Soil erodibility (K), slope length (L), and slope steepness (S) were used as main factors in the USLE in consideration of the soil, not by the land use or land cover. Second, the soil erodibility increased in paddy soils where it is low in soil content, and the very fine sandy loam exists. Analysis of the slope length showed that the value of a flat ground was 1, and the maximum value was 9.17 appearing on the steep mountain. Soil erodibility showed positive relationship to a slope. Third, the potential soil erodibility index (PSEI) showed that it is high in the PSEI of the areas of steep upland and orchard on the slope of mountainous region around Dokjigol mountain, Dunji mountain, and Deummit mountain. And the PSEI in the same land cover was different depending on the slope rather than on the physical properties in soil. Forth, the analysis of land suitability in soil erosion explained that study area had 3,672.35ha showing the suitable land, 390.88ha for the proper land, and 216.54ha for the unsuitable land. For unsuitable land, 8.71ha and 6.29ha were shown in fallow uplands and single cropping uplands, respectively.

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Ca2+, Mg2+, Na+, K+ in Reclaimed Tideland Soils in Kyehwado (계화도 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향)

  • Baek, Seung-Hwa;Lee, Sang-Uk;Lim, Hyo-Bin;Kim, Dae-Geun;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The effect of application of gypsum (G), popped rice hulls (PRH), and zeolite (Z) in exchangeable cations concentrations of reclaimed tideland soil in Kyehwado was investigated for 3 years from 2004 to 2006 in a pot experiment with bermuda grass (Cynodon dactylon). Treatments with three soil conditioner and with three applications were established with three replications; G1 (1,550 kg $10a^{-1}$), G2 (3,100), and G3 (6,200) for gypsum, H1 (1,000), H2 (2,000), and H3 (3,000) for PRH, and HZ1 (200), HZ2 (400), and HZ3 (800) for co-application of zeolite with PRH at the 1,500 kg $10a^{-1}$. At 60, 90, 120 days after treatment (DAT), exchangeable cations ($K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$) were analyzed Gypsum application significantly decreased $k^+$, $Na^+$, $Mg^{2+}$ in the soil probably due to exchange and subsequent leaching of these cations by $Ca^{2+}$ from the gypsum applied. Overall, $K^+$ concentration was gradually decreased by continuous application of soil conditioners and was in the order of 2004>2005>2006 regardless of the kinds and application rate of soil conditioners. Comparing $K^+$ concentrations among the soil conditioners in the same year, its concentration was in the order of gypsum$Na^+$ concentration; i.e. $Na^+$ concentration was in the order of gypsum$\ll$PRH$Mg^{2+}$ also showed a similar pattern to $Na^+$. Gypsum application significantly increased $Ca^{2+}$ concentration and in the gypsum treated soil $Ca^{2+}$ concentration increased with years.

Preferential Flow as Tested by Breakthrough Curves of Cl- and Cu2+ from Saturated Undisturbed Soil Core Samples under Steady Flow Conditions (포화 불교란 토양시료의 Cl- 및 Cu2+ 출현곡선에 의한 preferential flow의 검증)

  • Yoo, Sun-Ho;Han, Kyung-Hwa;Ro, Hee-Myong;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • Preferential flow has recently been the subject of increasing interest because these phenomena contribute to solute transport in soils. Commonly, preferential flow paths are associated with macropores or highly structured soils. We presented an analysis of the measured breakthrough curves (BTCs) of $Cl^-$ and $Cu^{2+}$ ions to test the occurrence of preferential flow in soils using miscible displacement technique under steady flow conditions. We also analyzed soil water retention curves and from this curves induced cumulative pore size distribution of undisturbed soils, which sampled from Ap1, B1, and C horizons of Songjeong series soils (the fine loamy, mesic family of Typic Hapludults). In this study, miscible displacement experiment on C horizon was excluded, because it is structureless sandy loam with saturated hydraulic conductivity of $5.2cmhr^{-1}$. The saturated hydraulic conductivity of Ap1 horizon was $2.0cmhr^{-1}$, which was about 7 times higher than that of B1 horizon ($0.27cm hr^{-1}$). Cumulative pore size distribution predicted that Ap1 horizon had more macropores (pore diameter larger than $49{\mu}m$, equivalent to -6 kpa of soil matric potential) than B1 horizon. The hydrodynamic dispersion coefficient from chloride BTCs was estimated as $1.3cm^2hr^{-1}$ for B1 and $34cm^2hr^{-1}$ for Ap1 horizon. However the retardation factors of B1 and Ap1 horizon were significantly different, i.e. 1 and 0.6, respectively, which means that there was distinct partition between mobile water and immobile phase in Ap1 horizon. The copper retardation effect of Ap1 horizon was less than that of B1 horizon, even though cation exchange capacity of Ap1 horizon was higher than that of B1 horizon. Thus, breakthrough curves of $Cl^-$ and $Cu^{2+}$ obviously showed the probability that preferential flow would occur in Ap1 horizon.

  • PDF