• 제목/요약/키워드: Fine particulate Matter(PM2.5)

검색결과 152건 처리시간 0.026초

지표대기 미세먼지 정화를 위한 식물체 음이온 발생량 분석 및 음이온의 미세먼지 기대정화지수 평가 (Evaluation on the Expected Purification Efficiency of Air Ion and Analysis on the Generated Amount of Negative Air Ions by Plants for the Purification of Particulate Matter in Air)

  • 오득균;주진희
    • 한국환경과학회지
    • /
    • 제29권6호
    • /
    • pp.623-631
    • /
    • 2020
  • This study analyzes the effect of negative air ions on the concentration of airborne particulate matter and evaluates the expected purification efficiency of open spaces for particulate matter by investigating the amount of negative air ions generated by plants. This study establishes a negative air ion generation treatment environment, plant environment, and control environment to measure the purification efficiency of particulate matter under the conditions of each, analyzing the expected purification efficiency by designing a particulate matter purification model. Results show that the amount of generated negative air ion according to environment was negative air ion generation treatment environment > plant environment > control environment; this order also applies to the particulate matter purification efficiency. Moreover, it took 65 min for the negative ion generation treatment environment, 90 min for the plant environment, and 240 min for the control environment to reach the standard expected purification efficiency of particulate matter concentration of 960 mg/㎥ for PM10. For PM2.5, with the designated maximum concentration of 700 mg/㎥, it took 60 min for the negative ion generation treatment environment, 80 min for the plant environment, and more than 240 min for the control environment. Based on these results, the expected purification efficiency compared to the control environment was quadrupled in the negative ion generation treatment environment and tripled in the plant environment on average.

미세먼지의 질병에 미치는 유해성 (Harmfulness of Particulate Matter in Disease Progression)

  • 최종규;최인순;조광근;이승호
    • 생명과학회지
    • /
    • 제30권2호
    • /
    • pp.191-201
    • /
    • 2020
  • 사회의 급속한 발전과 함께 수반되는 환경오염이 인간의 건강을 위협하는 커다란 위험인자로 인식되기 시작하면서 공기오염을 억제하기 위한 노력과 공기오염에 의해 유발되는 여러 질환을 억제 및 치료하기 위한 연구개발이 급속히 증가하고 있다. 인간 건강에 나쁜 영향을 주는 공기오염의 주된 원인중의 하나인 미세먼지는 (particulate matter, PM) 크기에 따라 일반미세먼지와(PM10) 초미세먼지(PM2.5)로 나누어 질 수 있으며, 호흡기, 소화기, 및 피부에 흡수 및 부착되어 이상 면역반응을 유발하여 만성호흡기질환, 당뇨병 및 면역질환등을 촉진하는 것으로 알려져 있다. 그동안 인류의 건강을 위해 미세먼지의 발생을 억제하기 위한 범 국가적 노력과 함께 미세먼지의 유해성을 증명하기 위한 많은 연구가 진행되어 왔다. 본 총설에서는 여러 인체질환에 있어서 미세먼지가 미치는 유해성을 중심으로 소개하고 미세먼지의 생물학적 위험성을 평가하는 세포 및 동물실험법에 대해 요약하였다.

제철제강시설의 대기오염물질 배출특성 및 배출계수 산정 (Emission Characteristics and Coefficients of Air Pollutants in Iron and Steel Manufacturing Facilities)

  • 김병욱;홍영균;이영섭;양승표;현근우;이건호
    • 한국환경보건학회지
    • /
    • 제47권3호
    • /
    • pp.259-266
    • /
    • 2021
  • Objectives: This study was conducted to identify the emissions characteristics of total particulate matter (TPM), fine dust (PM10, PM2.5), and gaseous pollutants (SOx, NOx) in iron and steel manufacturing facilities in order to investigate emissions factors suitable for domestic conditions. Methods: Total particulate matter (TPM), fine dust (PM10, PM2.5), and gas phase materials were investigated at the outlet of electric arc furnace facilities using a cyclone sampling machine and a gas analyzer. Results: The concentrations of TPM ranged from 1.64 to 3.14 mg/Sm3 and the average was 2.47 mg/Sm3. Particulate matter 10 (PM10) averaged 1.49 mg/Sm3 with a range of 0.92 to 1.99 mg/Sm3, and the resulting ratio of PM10 to TPM was around 60 percent. PM2.5/PM10 ranged from 33.7 to 47.9% and averaged 41.6%. Sulfur oxides (SOx) were not detected, and nitrogen oxides (NOx) averaged 6.8 ppm in the range of 5.50 to 8.67 ppm. TPM emission coefficients per product output were in the range of 0.60 to 1.26 g/kg, 0.13 to 0.79 g/kg for PM10 and 0.12 to 0.36 g/kg for PM2.5, and showed many differences from the emissions coefficients previously announced. An emissions coefficient for NOx is not currently included in the domestic notices, but the results were calculated to be 0.42 g/kg per product output. Conclusions: Investigation and research on emissions coefficients that can reflect the characteristics of various facilities in Korea should be conducted continuously, and the determination and application of unique emissions coefficients that are more suitable for domestic conditions are needed.

Satellite-based Assessment of Ecosystem Services Considering Social Demand for Reduction of Fine Particulate Matter in Seoul

  • Lim, Chul-Hee
    • 대한원격탐사학회지
    • /
    • 제38권4호
    • /
    • pp.421-434
    • /
    • 2022
  • Fine particulate matter (PM2.5) has been the biggest environmental problem in Korea since the 2010s. The present study considers the value of urban forests and green infrastructure as an ecosystem service (ES) concept for PM2.5 reduction based on satellite and spatial data, with a focus on Seoul, Korea A method for the spatial ES assessment that considers social demand variables such as population and land price is suggested. First, an ES assessment based on natural environment information confirms that, while the vitality of vegetation is relatively low, the ES is high in the city center and residential areas, where the concentration of PM2.5 is high. Then, the ES assessment considering social demand (i.e., the ESS) confirms the existence of higher PM2.5 values in residential areas with high population density, and in main downtown areas. This is because the ESS of urban green infrastructure is high in areas with high land prices, high population density, and above-average PM2.5 concentrations. Further, when a future green infrastructure improvement scenario that considers the urban forest management plan is applied, the area of very high ESS is increased by 74% when the vegetation greenness of the green infrastructure in the residential area is increased by only 20%. This result suggests that green infrastructure and urban forests in the residential area should be continuously expanded and managed in order to maximize the PM2.5 reduction ES.

대전 3, 4 공단지역의 미세분진에 대한 화학적 특성과 오염원 연구 (Chemical characteristics and sources of fine ambient particulate matter from the third and fourth industrial complex area of Daejeon city, Korea)

  • 임종명;이진홍;정용삼
    • 분석과학
    • /
    • 제20권1호
    • /
    • pp.33-40
    • /
    • 2007
  • 대전시 3, 4 공단지역의 대기 중 미세분진을 대상으로 기기 중성자방사화분석법을 이용하여 유해금속을 포함한 약 27종의 미량원소를 분석하였다. 원소분석에 대한 정확도를 평가하기 위해 NIST SRM 2783(air particulate on filter media)을 사용하여 동일한 조건에서 분석한 결과, Sb, Mn, V, Mg, Na, K, Ti, Co, Zn, Sm은 상대오차 5% 이내의 매우 정확한 분석결과를 보였고 Cr, Fe, Ba, Th, Ce, Al, Cu는 10% 이내로 나타났다. 유해금속인 As, Mn, Se, V, Zn의 농도는 각각 $3.26{\pm}2.72$, $9.86{\pm}4.71$, $2.18{\pm}1.25$, $4.91{\pm}2.41$, $158{\pm}78ng/m^3$로 나타났고 인자분석 결과 연구대상지역의 미세분진에 대한 오염원은 6개로 추정되었다.

Measurement of the Elemental Composition in Airborne Particulate Matter Using Instrumental Neutron Activation Analys

  • Chung, Yong-Sam;Lim, Jong-Myoung;Moon, Jong-Hwa;Kim, Sun-Ha;Cho, Hyun-Je;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.450-459
    • /
    • 2004
  • For the evaluation of emission sources by air sampling, airborne particulate matter for fine (<2.5 ${\mu}m2$ EAD : $PM_{2.5}$) and coarse partical (2.5-10 ${\mu}m2$ EAD : $PM_{2.5-10}$ fractions were collected using a Gent stacked filter unit low volume sampler and two types of polycarbonate filters. Air samples were collected twice monthly at two regions in and around Daejeon city in the Republic of Korea from January to December 2002. Monthly mass concentration of $PM_{2.5}$ and $PM_{2.5-10}$ were measured and the concentrations of 10 marker elements (Al, Sc, Ti ; Na, Cl ; As, V. Sb, Br, Se) were determined by an instrumental neutron activation analysis. Analytical quality control was corried out using certified reference materials. Enrichment factors were also calculated from the monitoring data to classify the anthropogenic and crustal origins.

국내 배경지역 대기 미세먼지의 기류 이동경로별 조성변화: 2013년 측정 (Composition Variation of Atmospheric Fine Particulate Matters in Accordance with Air Mass Transport Pathways at Background Site of Korea in 2013)

  • 고희정;임은하;송정민;김원형;강창희;이해영;이철규
    • 한국대기환경학회지
    • /
    • 제31권1호
    • /
    • pp.15-27
    • /
    • 2015
  • The collection of fine particulate matter samples was made at Gosan site of Jeju Island, one of the background sites of Korea, during a year of 2013, and their water-soluble ionic species were analyzed in order to examine the chemical compositions and pollution characteristics. The concentrations of $nss-SO_4{^{2-}}$, $NH_4{^{+}}$, $NO_3{^{-}}$, and $K^+$ had occupied 66.0% of water-soluble ionic species in $PM_{10}$, especially 94.3% in $PM_{2.5}$ fine mode, however the $nss-Ca^{2+}$ and $Na^+$ showed high concentrations in $PM_{10-2.5}$ coarse mode. $NO_3{^-}/nss-SO_4{^{2-}}$ concentration ratios in $PM_{10}$ and $PM_{10-2.5}$ were 0.30 and 0.13, showing less significant effect from automobile and local pollution sources. The sulfate and nitrate compounds were presumed to be long-range transported to Gosan area by the relatively high SOR and NOR values. The trajectory cluster analysis showed the higher concentrations of the major secondary pollutants ($nss-SO_4{^{2-}}$, $NO_3{^{-}}$, $NH_4{^{+}}$) and $nss-Ca^{2+}$ when the air masses had moved from China continent and Korean peninsula into Gosan area.

중성자 방사화분석법과 Gent SFU 샘플러를 이용한 도시의 농촌지역의 대기분지($PM_{10}$)관측 연구 (Study on Airborne Particulate Matter ($PM_{10}$) Monitoring in Urban and Rural Area by Using Gent SFU Sampler and Instrumental Neutron Activation Analysis)

  • 정용삼;문종화;김선하;박광원;강상훈
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.453-467
    • /
    • 2000
  • The aim of this research is to collect and characterize fine particles (FPM:$\leq$2.5${\mu}{\textrm}{m}$) and coarse particles (CPM: 2.5~10${\mu}{\textrm}{m}$) using a low volume air sampler provided by the IAEA, at urban (Taejon) and rural area(Wonju) for a period of about two years(April 1996 to May 1998) and to promote a use of nuclear analytical techniques for air pollution studies. For the collection of airborne particulate matter (PM(sub)10), the Gent stacked filter unit sampler and polycarbonate membrane filters were employed. The concentration of trace elements in collected APM samples were determined byu instrumental Neutron Activation Analysis. For validation of the analytical data, internal quality control were implemented by using both the comparison of the analytical results of standard reference materials(NIST SRM 1648) and interlaboratory comparison for proficiency test (NAT-3). The standard uncertainty was less than 15% and Z-score of two samples were within $\pm$1. The monitoring of (PM(sub)10) mass concentration and elemental concentrations were carried out weekly. The average mass concentration of (PM(sub)10) in urban and rural areas were 59.2$\pm$36.5$\mu\textrm{g}$/㎥ and 41.4$\pm$23.7$\mu\textrm{g}$/㎥, respectively. To investigate the emission source, the enrichment factors were calculated for the fine and coarse particle fractions at two sites, respectively and these values were classified for anthropogenic and soil origin elements.

  • PDF

국내 지역별 미세먼지 농도 리스크 분석 (Regional Analysis of Particulate Matter Concentration Risk in South Korea)

  • 오장욱;임태진
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.157-167
    • /
    • 2017
  • Millions of People die every year from diseases caused by exposure to outdoor air pollution. Especially, one of the most severe types of air pollution is fine particulate matter (PM10, PM2.5). South Korea also has been suffered from severe PM. This paper analyzes regional risks induced by PM10 and PM2.5 that have affected domestic area of Korea during 2014~2016.3Q. We investigated daily maxima of PM10 and PM2.5 data observed on 284 stations in South Korea, and found extremely high outlier. We employed extreme value distributions to fit the PM10 and PM2.5 data, but a single distribution did not fit the data well. For theses reasons, we implemented extreme mixture models such as the generalized Pareto distribution(GPD) with the normal, the gamma, the Weibull and the log-normal, respectively. Next, we divided the whole area into 16 regions and analyzed characteristics of PM risks by developing the FN-curves. Finally, we estimated 1-month, 1-quater, half year, 1-year and 3-years period return levels, respectively. The severity rankings of PM10 and PM2.5 concentration turned out to be different from region to region. The capital area revealed the worst PM risk in all seasons. The reason for high PM risk even in the yellow dust free season (Jun. ~ Sep.) can be inferred from the concentration of factories in this area. Gwangju showed the highest return level of PM2.5, even if the return level of PM10 was relatively low. This phenomenon implies that we should investigate chemical mechanisms for making PM2.5 in the vicinity of Gwangju area. On the other hand, Gyeongbuk and Ulsan exposed relatively high PM10 risk and low PM2.5 risk. This indicates that the management policy of PM risk in the west side should be different from that in the east side. The results of this research may provide insights for managing regional risks induced by PM10 and PM2.5 in South Korea.