• Title/Summary/Keyword: Fine organic stripe

Search Result 5, Processing Time 0.027 seconds

Fabrication of Fine Organic Thin-Film Stripes Using a Hydrophobic Needle (소수성 Needle을 이용한 미세 유기 박막 Stripe 제작)

  • Kim, Jongmyeong;Lee, Jinyoung;Shin, Dongkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.73-78
    • /
    • 2020
  • There appears lateral capillary force in a hydrophilic flat needle employed for the fabrication of fine organic thin-film stripes, bringing in an increase of the stripe width. It also causes the stripe thickness to increase with increasing coating speed, which is hardly observed in a normal coating process. Through computational fluid dynamics (CFD) simulations, we demonstrate that the lateral capillary flow can be substantially suppressed by increasing the contact angle of the needle end. Based on the simulation results, we have coated the outer surface of the flat needle with a hydrophobic material (polytetrafluoroethylene (PTFE) with the water contact angle of 104°). Using such a hydrophobic needle, we can suppress the lateral capillary flow of an aqueous poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) to a great extent, rendering the stripe narrow (63 ㎛ at 30 mm/s). Consequently, the stripe thickness is decreased as the coating speed increases. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the fine PEDOT: PSS stripe and observed the strong light-emitting stripe with the width of about 68 ㎛.

Effect of the Microtip Length in a Slot-die Head on Fine Stripe Coatings (미세 스트라이프 코팅에 미치는 슬롯 다이 헤드 마이크로 팁 길이의 영향)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.69-74
    • /
    • 2019
  • The aim of this work is to investigate the effect of the microtip length in a slot-die head on coating of a fine poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) stripe. To this end, we have employed a meniscus guide with a 150-㎛-wide microtip and performed roll-to-roll slot-die coatings by varying its length between 500 ㎛ and 50 ㎛. When the microtip length is 150 ㎛ or shorter, we have observed three unexpected phenomena; 1) though the solution spreads much wider than the microtip width, yet the coated stripe width is almost the same as the microtip width, 2) the stripe width decreases, but the stripe thickness is rather increased with increasing coating speed at a fixed flow rate, 3) we obtain stripes much narrower than the microtip width at high coating speeds. It is due to the fact that 1) the meniscus is not well controlled by a short microtip, 2) the main stream of solution from the outlet is very close to the substrate and thus the distributed solution along the head lip merges with the main stream, and 3) the solution is not spread over the entire microtip end at high coating speeds, causing a tiny wobble in the meniscus. Using the 150-㎛-wide and 250-㎛-long microtip, we have fabricated 153-㎛-wide and 94-nm-thick PEDOT:PSS stripe at the maximum coating speed of 13 mm/s. To demonstrate its applicability in solution-processable organic light-emitting diodes (OLEDs), we have also fabricated an OLED device with the fine PEDOT:PSS stripe and obtained strong light emission from it.

Fabrication of Fine PEDOT:PSS Stripes Using Needle Coating (Needle 코팅을 이용한 미세 PEDOT:PSS 스트라이프 제작)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.100-104
    • /
    • 2019
  • We have investigated the feasibility of fabricating fine stripes using needle coating for potential applications in solution-processed organic light-emitting diodes (OLEDs). To this end, we have employed an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution that has been widely used as a hole injection layer (HIL) of OLEDs and performed needle coatings by varying the process parameters such as the coating gap and coating speed. As expected, the stripe width is reduced with increasing coating speed. However, the central thickness of the stripe is rather increased as the coating speed increases, which is different from other coating processes such as slot-die and blade coatings. It is due to the fact that the meniscus formed between the needle tip and the substrate varies depending sensitively on the coating speed. It is also found that the stripe width and thickness are reduced with increasing coating gap. To demonstrate its applicability to OLEDs, we have fabricated a red OLED stripe and obtained light emission with the width of about 90㎛.

A Patterning Process for Organic Thin Films Using Discharge and Suction Needles (토출 및 흡입 Needle을 이용한 유기 박막 패터닝 공정)

  • Kim, Daeyeob;Shin, Dongkyun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • Unlike a printing process, it is difficult to pattern organic thin films in the longitudinal (coating) direction using a coating process. In this paper, we have investigated the feasibility of patterning organic thin films using needles. To this end, we have slot-coated an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution in the form of a fine stripe or large area and then applied the dual needle; one for discharging the main solvent of the underlying thin film and the other for sucking the dissolved thin film. We have found that the pattern width and depth increase as the moving speed of the plate decreases. However, it is observed that the sidewall slope is very gentle (the length of the slope is of the order of 200 ㎛) due to the fact that the discharged main solvent is widely spread and then isotropic etching occurs. With this scheme, we have also demonstrated that a fine stripe can be obtained by scanning the dual needle closely. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the patterned PEDOT:PSS stripe and observed the insulation property in the strong light-emitting stripe.

Development of a Wireless Bar Coater Applied to Organic Solar Cells (유기 태양전지 제작이 가능한 와이어리스 바코터 개발)

  • Yu, Semin;Yu, Young Jae;Moon, Heekwang;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.584-588
    • /
    • 2013
  • Studies are using a roll forming bar. A bar coating device available for a variety of coating conditions was developed. It is characterized by the bar forward and reverse rotation, fine-tune coating speed, and stripe coating. To determine the characteristics of the equipment, the coating tests under different coating conditions were carried out. As a result of the coating tests, the equipment was confirmed as one of strong candidates for the production tool of organic solar cells. The further production test of organic solar cells through stripe coating is in progress.