• 제목/요약/키워드: Fine motion

검색결과 194건 처리시간 0.022초

Fine-Motion Estimation Using Ego/Exo-Cameras

  • Uhm, Taeyoung;Ryu, Minsoo;Park, Jong-Il
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.766-771
    • /
    • 2015
  • Robust motion estimation for human-computer interactions played an important role in a novel method of interaction with electronic devices. Existing pose estimation using a monocular camera employs either ego-motion or exo-motion, both of which are not sufficiently accurate for estimating fine motion due to the motion ambiguity of rotation and translation. This paper presents a hybrid vision-based pose estimation method for fine-motion estimation that is specifically capable of extracting human body motion accurately. The method uses an ego-camera attached to a point of interest and exo-cameras located in the immediate surroundings of the point of interest. The exo-cameras can easily track the exact position of the point of interest by triangulation. Once the position is given, the ego-camera can accurately obtain the point of interest's orientation. In this way, any ambiguity between rotation and translation is eliminated and the exact motion of a target point (that is, ego-camera) can then be obtained. The proposed method is expected to provide a practical solution for robustly estimating fine motion in a non-contact manner, such as in interactive games that are designed for special purposes (for example, remote rehabilitation care systems).

초정밀 위치결정을 위한 6자유도미동기구의 궤적 특성에 관한 연구 (A Study on Trajectory Characteristics of the Six-Degrees-of-Freedom Fine Motion Mechanism for the Ultra Precision Positioning Decision)

  • 김재열;윤성운
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.33-39
    • /
    • 1994
  • The purpose of this research is to examine precise linear motion and rotary motion. A six-degrees-of-freedom fine motion mechanism is introduced to drive an object precisely in directions of X, Y and Z-axes and around them : three rectangular linear motion and rotary ones. An experimental mechanism is introduced in which a $70$\times$70$\times$70$\times$(${mm}^3$) cube object is driven by six PZT actuator. The study is to establish the six-degrees-of-freedom fine motion mechanism of linear motion and rotary motion using PZT actuator.

  • PDF

A New East Multiresolution Motion Estimation In the Wavelet Detail Level

  • Kim, Kwang-Yong;Lee, Kyeong-Hwan;Lee, Tae-Ho;Kim, Duk-Gyoo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.807-810
    • /
    • 2000
  • In this paper, a new hierarchical motion estimation (ME) scheme using the wavelet transformed multi-resolution image layers is proposed. While the coarse-to-fine (CtF) ME, used in previously proposed coding schemes, can provide a better estimate at the coarsest resolution, it is difficult to accurately track motion at finer resolution. On the other hand, in fine-to-coarse (FtC) ME, it can solves this local minima problem by estimating motion track at the finest subband and propagating the motion vector (MV) to coarser subband. But this method causes to higher computational overhead. This paper proposes a new method for reducing the computational overhead of fine-to-coarse rnulti-resolution motion estimation (MRME) at the finest resolution level by searching for the region to consider motion vectors of the coarsest resolution subband.

  • PDF

가변 스텝 마이크로 액츄에이터의 설계 및 구동특성 (Design and Performance Evaluation of Micro Stepping Actuator with a Variable Step Size)

  • Lim, Y.M.;Kim, S.H.;Kwak, Y.K.
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.26-31
    • /
    • 1995
  • A new actuating mechanism suitable for a micro positioning device is developed using piezo-electric elements. The actuator can make a step movement of 0.5 .mu. m up to 3.5 .mu. m. The step size can be adjusted on demand. By repeating this step action, long distance movement is achieved. Precise positioning can be obtained by combining the coarse motion with the maximum step size and fine motion. Two types of fine motion have been proposed for a driving method. Firstly, feedback control bases on PID is applied. The experimental results for the two method are presented.

  • PDF

전자기력 제어를 이용한 6 자유도 초정밀 스테이지 (Six D.O.F Ultra Fine Stage using Electromagnetic Force Control)

  • 정광석;백윤수
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.158-164
    • /
    • 2000
  • In recent year, desire and request fer micro automation are growing rapidly covering the whole range of the industry. This has been caused mainly by request of more accurate manufacturing process due to a higher density of integrated circuits in semiconductor industry. This paper presents a six d.o.f fine motion stage using magnetic levitation technique, which is one of actuating techniques that have the potential for achieving such a micro motion. There is no limit in motion resolution theoretically that the magnetically levitated part over a fixed stator can realize. In addition, it Is possible to manipulate the position and the force of the moving part at the same time. Then, the magnetic levitation technique is chosen into the actuating method. However, we discuss issues of design, kinematics, dynamics, and control of the proposed system. And a few experimental results fur step input are given.

  • PDF

Adaptive control for robot manipulators exeeuting fine motion tasks

  • Parra-Vega, Vicente;Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.183-188
    • /
    • 1994
  • A passivity-based adaptive controller for robots executing fine motion tasks is proposed. The robot dynamics is modelled such that it is subject to holonomic constraints and hence it can be treated as a particular case of constrained motion tasks. Energy-motivated stability analysis is used to conclude the asymptotic stability. Remarks regarding the structure of the controller are given. A computer simulations study is presented and a robust constraint stabilization algorithm is also proposed.

  • PDF

두 시스템간의 편차 최소화를 적용한 상대적 동작제어 방법 (Relative Motion Control Methodology Using the Minimum Relative Error Between Two Systems)

  • 김성권
    • 제어로봇시스템학회논문지
    • /
    • 제9권12호
    • /
    • pp.994-1000
    • /
    • 2003
  • A new relative motion control methodology for a following system to an independent leading system is proposed for controlling relative position, velocity, and tension etc. It is based on maintaining minimum relative error between two independent systems. The control command of the following system to a leading system is generated by adding the current command and the output of the relative error compensation. The proposed control method is implemented on the experimental equipment which is a wire winding-unwinding system to control the tension of the line. The results show the unwinding system(follower) following the independent motion of the winding system(leader) to control the constant tension of the line in order to keep the roller dancer in reference position. The relative motion control method proposed in this paper can be applied to high precision equipment for unwinding and winding fine wire, fine fiber, and tape etc.

Phase Correlation을 이용한 표적 추적기 개발 (Development of a Target Tracker using Phase Correlation)

  • 진상훈;석정엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.165-168
    • /
    • 2004
  • This paper propose a target tracker using phase correlation. The tracker consist of a pre-processing module, a translation estimation module based on phase correlation, a fine motion estimation module applied when confidence rate could not fulfill a threshold value and a reference image update module. The fine motion estimation module measure the shift, rotation and scale of input image compared to reference using Fourier-Mellin transform. Proposed tracker was tested its accuracy and robustness using some real indoor and outdoor image sequences.

  • PDF

탐색 과정시 2단 액추에이터의 상호 작용 분석 및 트랙 끌어들임 성능 향상을 위한 제어 (Interaction Analysis of Dual-stage System during Seek Motion and Control for Track Pull-in Enhancement)

  • 이광현;양현석;박노철;박영필;최진영
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1276-1286
    • /
    • 2005
  • In this paper, the dual stage interaction between the coarse actuator and the fine actuator of an optical disk drive is studied, and the new control method to enhance the track pull-in performance using fine actuator control is proposed. First, the dynamic analysis for the dual stage and the experiments to find the each actuator dynamics are performed. From the experiments, some physical parameters of the actuators were derived, then, some simulations are performed to find the interaction effect of the fine actuator during seek motion. Second, the center servo which suppresses the vibration of fine actuator during seek motion is designed and evaluated. And the fine actuator control to reduce the relative velocity between the target track and beam spot is proposed. From simulations, we show that fine actuator control which has same frequency and same phase of the disturbance is effective to reduce the relative velocity, and this result leads to track pull-in enhancement. Hence, the proposed control method is good approach to improve the track pull-in performance. Finally, the realization of the proposed method and some comments of it are briefly discussed.

전자기력을 이용한 3 자유도 정밀 위치결정기구에 관한 연구 (A Study on Three Degree-of-Freedom Fine Positioning Device Based on Electromagnetic Force)

  • 이기하;최기봉;박기환;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.199-207
    • /
    • 1998
  • This paper presents the design and the control of three degree-of-freedom(DOF) fine positioning device based on an electro-magnetic force. The device is designed by use of a magnetic circuit theory and it is capable of fine motion due to the electro-magnetic force. The device consists of permanent magnets, yokes and coils. The magnetic fluxes generated from the permanent magnets constitute magnetic paths through steel, whereas the coils are arranged into the gap between two surfaces of the yokes. Therefore, by supplying current to the coils, the coils are capable of some motions due to Lorentz forces. For the optimal design of the actuating system, the system parameters are defined and investigated under the given constraints. From the system modeling in small displacement, three decoupled equations of motion are obtained. To get better performance of the system, a PID controller is implemented. Experimental results are presented in terms of time response and accuracy.

  • PDF