• Title/Summary/Keyword: Fine mixtures

Search Result 173, Processing Time 0.04 seconds

Characteristics of Concrete Using Coal-By-product as Fine Aggregate (석탄 부산물인 경석을 잔골재로 사용한 콘크리트의 특성)

  • In-Hwan Yang;Seung-Tae Jeong;Geun-Woo Park;Gyeong-Min Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • In this paper, an experimental study on the strengths and material properties of concrete manufactured by using coal gangue, as a fine aggregate was conducted. Experimental parameters included coal gangue aggregate contents as a replacement of fine aggregate by 50 % and 100 % (by volume) and fly ash contents. The water-binder ratio was fixed at 0.38. In addition, 30 % of the OPC binder was replaced with fly ash in some mixtures. Test of the unit weight, compressive, split tensile, and flexural tensile strength of concrete were performed and test results were analyzed. Unit weight, compressive strength, split tensile strength, and flexural tensile strength decreased as the coal recycled aggregates increased. In addition, TGA and SEM experiments, which are microstructure experiments, were conducted to analyze thermogravimetric analysis and ITZ by section.

Changes of Saturated Hydraulic Conductivity of Bed-soils Mixed with Organic and Inorganic Materials

  • Lee, Jeong-Eun;Kim, Yong;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.66-70
    • /
    • 2014
  • Bed-soils can be used to help plants to overcome unfavorable conditions of soils, especially hydraulic properties of soils. This study was conducted to evaluate the effect of organic and inorganic raw materials on saturated hydraulic conductivity ($K_s$) of bed-soils. Perlite and bottom ash, which are inorganic materials, increased more $K_s$ of bed-soils than coco peat, an organic material. However, vermiculite, an inorganic material, increased less than coco peat. Saturated hydraulic conductivity of bed-soil mixed with fine vermiculite ($0.14{\pm}0.02mh^{-1}$) was much lower than one containing coarse vermiculite ($0.85{\pm}0.21mh^{-1}$). Such effect was more apparent when pressure was added on bed-soils containing fine vermiculite ($0.07{\pm}0.01mh^{-1}$), probably reflecting the decrease in pore size with the expansion of vermiculite wetted. Compacting decreased more $K_s$ in the bed-soils containing coco peat or vermiculite than other mixtures. Those results suggest that perlite and bottom ash in bed-soils play an important role in improving saturated hydraulic conductivity but vermiculite in bed-soils may suppress the improvement of saturated hydraulic conductivity with the decrease of its size and with the increase of compacting pressure.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

A Quantitative Analysis on Feature of Hydrate Affecting Early-Age Strength (콘크리트 초기강도에 영향을 미치는 수화물의 정량분석에 관한 연구)

  • Song Tae Hyeob;Lee Mun Hwan;Lee Sea Hyun;Park Dong Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.583-586
    • /
    • 2005
  • Strength of concrete is very important factor in design and quality management and may represent overall quality of concrete. Such strength of concrete may differ depending on amount of cement mixed, water and fine aggregate ratio. Classic concrete products have been produced mainly with ordinary portland cement(hereinafter 'cement'), water and fine aggregate as shown above, but various additives and mixture materials have been used for concrete manufacturing, along with development of high functional concrete and diversification of structures. Various kinds of chemical mixtures agents and mixture materials have been used as it requires concretes with other features which cannot be solved with existing materials only, such as high strength, high flexibility and no-separation in the water. Such addition of various mixture agents may cause change in cement hydrate, affecting strength. Hydration of cement is the process of producing potassium hydroxide, C-S-H, C-A-H and Ettringite, while causing heat generation reaction after it is mixed with water, and generation amounts of such hydrates play lots of roles in condensation and hardening. This study aims to analyze its strength and features with hydrates by making specimen according to curing temperature, types of mixture agent, mixing ratio and ages and by analyzing such hydrates in order to analyze role of cement hydrate on early strength of concrete.

  • PDF

Effects of Fine LWA and SAP as Internal Water Curing Agents

  • de Sensale, Gemma Rodriguez;Goncalves, Arlindo Freitas
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.229-238
    • /
    • 2014
  • Typical high-performance concrete (HPC) mixtures are characterized by low water-cementitious material ratios, high cement contents, and the incorporation of admixtures. In spite of its superior properties in the hardened state, HPC suffers from many practical difficulties such as its sensitivity to early-age cracking (which is associated with self-desiccation and autogenous shrinkage). In this context, conventional curing procedures are not sufficiently effective to address these limitations. In order to overcome this issue, two strategies,which are based on the use of internal reservoirs of water, have been recently developed.One of these strategies is based on the use of lightweight aggregates (LWA), while the other is based on the use of superabsorbent polymers (SAP). This paper studies and compares the efficiency of the LWA and SAP approaches.Moreover, some of the theoretical aspects that should be taken into account to optimize their application for internal curing of HPC are also discussed. Two fine LWA's and one SAP are studied in terms of autogenous deformation and compressive strength. Increasing the amounts of LWAor SAP can lead to a reduction of the autogenous deformation and compressive strength (especially when adding large amounts). By selecting appropriate materials and controlling their amount, size, and porosity, highly efficient internal water curing can be ensured.

Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand

  • Lade, Poul V.;Yamamuro, Jerry A.;Liggio, Carl D. Jr.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Many aspects of the behavior of sands are affected by the content of non-plastic fine particles and these various aspects should be included in a constitutive model for the soil behavior. The fines content affects maximum and minimum void ratios, compressibility, shear strength, and static liquefaction under undrained conditions. Twenty-eight undrained triaxial compression tests were performed on mixtures of sand and fine particles with fines contents of 0, 10, 20, 30, 50, 75, and 100% to study the effects of fines on void ratio, compressibility, and the occurrence of static liquefaction. The experiments were performed at low consolidation pressures at which liquefaction may occur in near-surface, natural deposits. The presence of fines creates a particle structure in the soil that is highly compressible, enhancing the potential for liquefaction, and the fines also alter the basic stress-strain and volume change behavior, which should be modeled to predict the occurrence of static liquefaction in the field. The void ratio at which liquefaction occurs for each sand/fines mixture was determined, and the variation of compressibility with void ratio was determined for each mixture. This allowed a relation to be determined between fines content, void ratio, compressibility, and the occurrence of static liquefaction. Such relations may vary from sand to sand, but the present results are believed to indicate the trend in such relations.

Modern Sedimentary Environment of Jinhae Bay, SE Korea

  • Park, Soo-Chul;Lee, Kang-Wook
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.43-54
    • /
    • 1996
  • Jinhae Bay, one of the largest tidal bays on the southern coast of Korea, is an area with thick accumulations of recent, fine-grained sediments, mainly supplied from the Nakdong River. The preponderance of silt and clay particles reflects the large quantity of sediments transported in suspension. Although the clay mineral assemblage is similar to that derived from the nearby Nakdong River, relatively high concentration (3-9%) of smectite suggests some local input of fine particles from several streams around the bay or some contribution from the offshore water that may be influenced by the Tsushima Current. The content of organic matters in sediments is as high as 12%, and their C/N ratios imply that they are comprised of mixtures derived from marine plankton and terrestrial plants. $^{210}Pb$ excess activity profiles of sediment cores yield an average sedimentation rate (a 100-year time scale) of about 2-5 mm/yr, which coincides well with the long-term sedimentation rate (a 1000-year time scale) estimated from the sediment isopach map. On the basis of sediment bulk density and sedimentation rate, an annual sink of mud in the bay is estimated approximately 1.0 ${\times}$ $10^{6}$ tons per year.

  • PDF

Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar

  • Ibrahim, Omar Mohamed Omar;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Exterior walls in buildings are exposed to various forms of thermal loads, which depend on the positions of walls. Therefore, one of the efficient methods for improving the energy competence of buildings is improving the thermal properties of insulation plaster mortar. In this study, lightweight fine aggregate (LWFA) and micro rubber ash (MRA) from recycled tires were used as partial replacements for sand. The flow ability, unit weight, compressive strength, tensile strength, thermal conductivity (K-value), drying shrinkage and microstructure scan of lightweight rubberized mortar (LWRM) were investigated. Ten mixtures of LWRM were prepared as follows: traditional cement mortar (control mixture); three mixes with different percentages of LWFA (25%, 50% and 75%); three mixes with different percentages of MRA (2.5%, 5% and 7.5%); and three mixes consisting both types with determined ratios (25% LWFA+5% MRA, 50% LWFA+5% MRA and 75% LWFA+5% MRA). The flow ability of the mortars was 22±2 cm, and LWRM contained LWFA and MRA. The compressive and tensile strength decreased by approximately 64% and 57%, respectively, when 75% LWFA was used compared with those when the control mix was used. The compressive and tensile strength decreased when 5% MRA was used. By contrast, mixes with determined ratios of LWFA and MRA affected reduced unit weight, K-value and dry shrinkage.

A Sustainable Concrete for Airfield Rigid Pavements (공항 활주로 포장용 친환경 콘크리트의 활용 방법)

  • Salas-Montoya, Andres;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.23-24
    • /
    • 2021
  • The use of recycled concrete aggregates (RCA) as a substitute for natural aggregates in new concrete produces both economic and environmental advantages. Most of the RCA applications for pavements have been primarily applied to support layers for roads and airfields. This paper summarizes a work completed at the University of Illinois in partnership with the O'Hare Modernization Program to examine the effect of coarse and fine RCA on the concrete's fresh and hardened properties for airfield rigid pavement applications. Ten different RCA concrete mixtures were prepared with the incorporation of different percentages of RCA fines as well as replacement of cement with high volume percentages of supplementary cementitious materials such as Class C fly ash and ground granulated blast furnace slag to improve the workability and long-term properties of RCA concrete. All the mixes on this stage included 100% recycled coarse aggregates and the Two-Stage Mixing Approach was used as a mixing procedure. Based on the results obtained in the research, mixes with high percentages of recycled fine and coarse aggregates could be used for construction of airfield concrete pavements in conjunction with supplementary cementitious materials

  • PDF

Preparation of Copper Fine Particles from Waste Copper by Chemical Reduction Method (폐동분으로부터 화학환원법에 의한 Cu 미립자 제조)

  • Kim, Yoon-Do;Song, Ki Chang;Song, Jong-Hyeok
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.560-565
    • /
    • 2007
  • Copper fine particles, ranging from $0.11{\mu}m$ to $0.64{\mu}m$ in average size, were prepared by a chemical reduction method using hydrazine ($N_2H_4$) as a reduction agent in waste copper solutions. The effect of the amount of hydrazine addition was investigated on the properties of the obtained powders. Also, the effect of the addition of dispersing agents [Polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP)] during particle synthesis was studied. The powders, obtained from 1 M waste copper solutions, showed the mixtures of Cu and $Cu_2O$ crystals at low hydrazine addition amounts of 0.8 mol and 1.0 mol, while those exhibited pure Cu crystals at adequate hydrazine addition amount of 0.12 mol. The average size of the Cu powders decreased with increasing the concentrations of hydrazine and dispersing agents. The addition of PVA to the solutions as a dispersing agent was more effective than that of PVP in preventing the aggregation of particles.