• Title/Summary/Keyword: Fine mixtures

Search Result 173, Processing Time 0.021 seconds

A study on electrical and thermal properties of conductive concrete

  • Wu, Tehsien;Huang, Ran;Chi, Maochieh;Weng, Tsailung
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Traditional concrete is effectively an insulator in the dry state. However, conductive concrete can attain relatively high conductivity by adding a certain amount of electronically conductive components in the regular concrete matrix. The main purpose of this study is to investigate the electrical and thermal properties of conductive concrete with various graphite contents, specimen dimensions and applied voltages. For this purpose, six different mixtures (the control mixtures and five conductive mixtures with steel fibers of 2% by weight of coarse aggregate and graphite as fine aggregate replacement at the levels of 0%, 5%, 10%, 15% and 20% by weight) were prepared and concrete blocks with two types of dimensions were fabricated. Four test voltage levels, 48 V, 60 V, 110 V, and 220 V, were applied for the electrical and thermal tests. Test results show that the compressive strength of specimens decreases as the amount of graphite increases in concrete. The rising applied voltage decreases electrical resistivity and increases heat of concrete. Meanwhile, higher electrical current and temperature have been obtained in small size specimens than the comparable large size specimens. From the results, it can be concluded that the graphite contents, applied voltage levels, and the specimen dimensions play important roles in electrical and thermal properties of concrete. In addition, the superior electrical and thermal properties have been obtained in the mixture adding 2% steel fibers and 10% graphite.

Increasing the Strength with Earth and Soil through Optimum Micro-filler Effect and Lime Composite Addition (흙과 모래의 최밀충전효과와 석회복합체의 첨가에 따른 강도 증진)

  • Hwang, Hey-Zoo;Roh, Tae-Hak;Kang, Nam-Yi
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.95-101
    • /
    • 2011
  • Earth has been used as a building material not only our country but also many foreign countries in the world. In foreign countries, we can often find the high-storied earthen houses which have been maintained for over several hundred years, which means the fact that earth differs in durability according to the methods of utilizing earth. So, the purpose of this study is to progress the fundamental research for utilizing earth as a wall material. Also, the another purpose of this study is to utilize the optimum micro-filler effect which adjusts the grain size of earth and the lime composite which promotes chemical combining power, and so examine whether earth material ensures its high compressive strength. This study applied both of rammed earth method and pour earth method among earth architecture methods. This study investigated compressive strength, slump, and air content according to unit binder weight. On the basis of such experimental results, this study derived the following conclusions. 1) Optimum micro-filler mixtures reduce a lot of fine particles contained in earth. If optimum micro-filler mixtures are used as aggregates, they develop lower W/B and relatively higher strength than general earth. 2) In this study, which uses optimum micro-filler earth mixtures and lime composite, rammed earth method develops 29MPa and pour earth method develops 28MPa in 28 days compressive strength. Such strengths can be utilized in building walls.

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

Development of Drainage Asphalt Mixture Using Large Size Aggregate and Its Performance on Test Pavement

  • Ogino Shoji;Ohmae Tatsuhiko;Matsumoto Yuki;Yamada Masaru
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.107-117
    • /
    • 2006
  • Recently, there has been a remarkable trend of using aggregates at sizes smaller than 13 mm for drainage asphalt pavement (DAP) in order to reduce the noise generated between vehicle tires and road surface. These DAPs have their performance and durability seriously worsen after several years in-service due to the clogging of void space and the abrasion. This paper proposes the use of large size aggregates in porous asphalt mixtures to overcome these defects. Results of laboratory and field experiments on asphalt mixtures with several aggregate gradations are investigated and compared. The study focuses on advantages of DAP using large size aggregate and on particle size combinations containing no fine aggregates of size 2.36 mm or less, which have not been considered in current engineering practice.

  • PDF

Novel Synthesis and Properties of $Si_3N_4$-based Nano/Nano-Type Composites

  • Yoshimura, Masahi
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.210-213
    • /
    • 2001
  • $Si_3N_4$/TiN nano/nano-type composites were successfully fabricated by the combination of a mechano-chemical grinding (MCG) method and a short time sintering process, and their wear resistance was evaluated. Powder mixtures of $\alpha-Si_3N_4$and Ti were prepared using mechano-chemical grinding process and the resulting nanocomposite powder mixtures were consolidated using pulsed electric current sintering (PECS). TEM observation showed that the nano/nano-type composites consisted of homogeneous and very fine matrix grains with the size less than 100 nm. The obtained $Si_3N_4$-based nano/nano-type showed high wear resistance and electric discharge machinability.

  • PDF

Preparation of Composite Adsorbents by Activation of Water Plant Sludge and Phenolic Resin Mixtures

  • Myung, Heung-Sik;Kim, Dong-Pyo
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.154-157
    • /
    • 2001
  • Composite adsorbents were prepared by mixing water plant sludge with phenolic resin having the ratio of 1 : 1, 1 : 2, and 1 : 3 respectively, curing from $100^{\circ}C$ to $170^{\circ}C$ under $N_2$ atmosphere, and then activating with $N_2$ at $700^{\circ}C$. Thermal property, specific surface area and morphology of the composite adsorbents as well as their precursors were measured by TGA, BET and SEM respectively. Removal efficiency of the composite adsorbents to ${NH_4}^+$ and TOC was compared with those of commercial zeolite and activated carbon. The adsorbents presented very promising TOC removal efficiency of 98%, which was identical level to that of commercial activated carbon while they displayed removal efficiency, only 32%, of ${NH_4}^+$. Therefore, this composite adsorbent considered as the alternative material of commercial activated carbon, used as an expensive removal agent of organic substances and THM in water treatment plant and it also suggested a possibility of practical application in other processes.

  • PDF

A Study on the Durabilities of High Volume Coal Ash Concrete by the Kinds of Coal Ash (석탄회 종류에 따른 석탄회를 대량 사용한 콘크리트의 내구특성에 관한 연구)

  • Choi, Se-Jin;Kim, Moo-Han
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.73-78
    • /
    • 2009
  • Coal ash is a by-product of the combustion of pulverized coal, and much of this is dumped in landfills. The disposal of coal ash is one of the major issues for environmental problems. In this paper, the effects of the kinds and replacement ratio of coal ash on the durabilities of concrete mixtures are investigated. Fine aggregate was replaced with coal ash(fly ash and bottom ash) in five different ratios, of 0%, 10%, 20%, 35%, and 50% by volume. Test results indicated that the compressive strength increased with the increase in fly ash percentage. The loss of compressive strength of bottom ash concrete mixes after immersion in sulphuric acid solution was less than in the control mix(BA0). In addition, the carbonation depth of fly ash concrete mixes was lower than the control mix(FA0).

Tensile Strength Variation of Binary Tablets Produced by Planetary Ball Milling (유성볼밀링으로 제조한 2성분 정제의 인장강도 변화)

  • Sim, Chol-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Planetary ball mill was used to decrease and control the particle size of excipients. The effects of the weight of sample and the revolution number of mill, and grinding time on the particle size of the ground sample were analyzed by response surface methodology. The optimum conditions for the milling of microcrystalline cellulose were 38.82 g of the weight of sample and 259 rpm of the revolution number of mill, and 45 minutes of grinding time. The predicted value of the particle size at the these conditions was $19.02{\mu}m$, of which the experimental value at the similar conditions was $18.68{\mu}m$. The tensile strength of tablets of single-component powders, such as microcrystalline cellulose, hydroxypropylmethyl cellulose and starch, binary mixtures and ground binary mixtures of these powder were measured at various relative densities. It was found that the logarithm of the tensile strength of the tablets was proportional to the relative density. A simple model, based upon Ryshkewitch-Duckworth equation that was originally proposed for porous materials, has been developed in order to predict the relationship between the tensile strength and relative density of ground binary tablets based on the properties of the constituent single-component powders. The validity of the model has been verified with experimental results for ground binary mixtures. It has demonstrated that this model can well predict the tensile strength of ground binary mixtures based upon the properties of single-component powders, such as true density, and the compositions. When the tensile strength of the mixture of microcrystalline cellulose hydroxypropylmethyl cellulose (90:10) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 45.3 to 5.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$. When the tensile strength of the mixture of microcrystalline cellulose starch (80:20) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 31.0 to 11.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$.

Measurements on the Propagation Characteristics of the Hydrogen Flame by Ultra Fine Thermocouple (극세선 열전대에 의한 수소화염의 전파특성 측정)

  • Kim, Dong-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.8-13
    • /
    • 2010
  • Hydrogen is expected to become a new, clean source of energy for the next generation. Therefore, many studies have investigated the characteristics of the hydrogen flame. However, because the hydrogen flame has high temperature, the flame does not emit visible light, and the flame propagates at a high velocity, investigating its characteristics is difficult. In the present study, in order to simultaneously examine the flame temperature and flame propagation velocity of hydrogen/air mixtures, ultra fine thermocouples with diameters of 12.7, 25.4, and 50.8 ${\mu}m$ are utilized. The results show that it is possible to detect the arrival time of the flame. Due to the temperature compensation with the time constants of thermocouples, it is also possible to estimate the flame temperature.

Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates (석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Han, Min-Cheol;Kim, Jong;Choi, Il-Kyeung;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.