• Title/Summary/Keyword: Fine mixtures

Search Result 173, Processing Time 0.018 seconds

고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가 (Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture)

  • 안상혁;전성일;남정희;안지환
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

Effect of polymer addition on air void content of fine grained concretes used in TRCC

  • Daskiran, Esma Gizem;Daskiran, Mehmet Mustafa;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.165-176
    • /
    • 2017
  • Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn't much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes ($d_{max}{\leq}1.0mm$) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.

순환잔골재를 사용한 굳지 않은 콘크리트의 특성 (Properties of Fresh Concrete with Recycled fine Aggregates)

  • 최기선;유영찬;윤현도;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.373-376
    • /
    • 2008
  • The objective of this study is to investigate the properties of fresh concrete with recycled fine aggregates. Three different kinds of fine aggregate with natural, high and low quality recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled fine aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of the concrete mixtures with constant slump is not affected by the replacement ratio of recycled fine aggregate. Therefore, the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

  • PDF

사질혼합토의 비배수 전단거동 특성 (Undrained Shear Behavior of Sandy Soil Mixtures)

  • 김욱기;안태봉
    • 한국지반환경공학회 논문집
    • /
    • 제12권8호
    • /
    • pp.13-24
    • /
    • 2011
  • 지반공학에서 흙은 흙 입자에 의한 세립분 함유율($F_c$=50%)에 따라 모래와 점토로 분류되며, 그들의 역학적 거동에 의해 설계가 이루어진다. 그러나, 모래-점토 혼합토는 일반적으로 intermediate soils로 불리어, 모래나 점토로 쉽게 구분할 수 없다. 본 연구에서는 다양한 비율을 갖는 실리카모래 세립혼합토에 대하여 정적비배수 전단시험을 수행하였고, 미리 계산된 에너지의 다짐방법과 예압밀법을 이용하여 모래부터 점토에 이르는 폭넓은 범위의 흙 구조에 대해 공시체를 준비하였다. 한계 세립함유율 보다 작은 혼합토의 전단강도는 세립분이 증가할수록 증가하며 최대 축차응력비는 조밀한 시료에 대하여 감소하고 느슨한 시료에 대하여 증가한다. 그 후, 골격간극비의 개념을 이용하여 혼합토의 단조 전단강도를 평가하였으며. 이에, 혼합토의 전단강도는 모래입자가 이루는 골격구조에 밀접한 관계가 있음을 알았다.

Shear Strength of Intermediate Soils with Different Types of Fines and Sands

  • Kim, Ukgie;Ahn, Taebong
    • 한국지반환경공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.33-42
    • /
    • 2013
  • In this paper, a series of monotonic undrained shear tests were carried out on four kinds of sand-fine mixtures with various fines content. Two kinds of sands (Silica sand V3, V6) and fines (Iwakuni natural clay, Tottori silt) were mixed together in various proportions, while paying attention to the void ratio expressed in terms of sand structure $(F_c{\leq}F_{cth})$. The undrained shear strength of mixtures below the threshold fines content was observed so that as the plastic fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. For non-plastic fines, the increase in the amount of fines leads to an increase in density of the soil, which results in an increase in strength. Then, the monotonic shear strength of the mixtures was estimated using the concept of granular void ratio. It was found that the shear strength of mixtures is greatly dependent on the skeleton structure of sand particles.

콘크리트의 초기강도 향상을 위한 고로슬래그 미분말의 사용에 관한 실험적 연구 (Improvement of Early age Concrete Strength Using Blast Furnace Slag Powder)

  • 유장원;이주선;박병관;배장춘;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.77-80
    • /
    • 2009
  • The purpose of the study was to examine engineering characteristics due to fine particle cement and gypsum contents to improve early strength of concrete substituted blast furnace slag powder. The results were as follows. Above all, For fluidity, generally all mixtures had lower fluidity than Plain mixture and was not satisfied target scope, but for mixture substituted the gypsum showed a little increasing trend. For air content, generally all mixtures compared to Plain mixture had decreasing tendency. However, all mixtures were satisfied target scope. For compressive strength, long-term strength was better than early strength according to ternary blast furnace slag contents was increased. For complex mixture was better than individual use of gypsum and fine particle cement.

  • PDF

Compressibility of broken rock-fine grain soil mixture

  • Xu, Ming;Song, Erxiang;Cao, Guangxu
    • Geomechanics and Engineering
    • /
    • 제1권2호
    • /
    • pp.169-178
    • /
    • 2009
  • Due to the enormous amount of fills required, broken rock-fine grain soil mixtures have been increasingly used in the construction of high-fill foundations for airports, railways and highways in the mountain areas of western China. However, the compressibility behavior of those broken rock-fine grain soil mixtures remains unknown, which impose great uncertainties for the performance of those high-fill foundations. In this research, the mixture of broken limestone and a fine grain soil, Douposi soil, is studied. Large oedometer tests have been performed on specimens with different soil content. This research reveals the significant influence of fine grains on the compressibility of the mixture, including immediate settlement, creep, as well as wetting deformation.

저소성 세립분 함량이 카올리나이트-모래 혼합토의 공학적 특성에 미치는 영향 (Effect of Low-Plastic Fine Content on the Engineering Properties of Kaolinite-Sand Mixture)

  • 판야봇 카오톤;이수형;최영태;윤찬영
    • 한국지반공학회논문집
    • /
    • 제37권7호
    • /
    • pp.35-42
    • /
    • 2021
  • 본 연구에서는 다양한 카올리나이트 혼합비에 따른 카올리나이트-모래 혼합토의 특성을 실험적으로 분석하였다. 이를 위하여 기본물성실험과 다짐시험을 실시하고 그 결과를 분석하였으며, 카올리나이트와 모래입자 간의 상호 구조를 더욱 자세히 분석하기 위하여 현미경 사진을 이용한 관측을 추가적으로 수행하였다. 실험결과, 카올리나이트 혼합비가 증가할수록 비표면적의 증가에 따른 함수비의 증가 및 모래입자와의 강한 결합구조를 형성하는 것으로 나타났으며, 최대 건조밀도는 감소하고 초기간극비는 증가하는 것으로 나타났다. 현미경 사진 분석 결과, 세립분 함량의 증가에 따라 모래의 특성이 지배적인 비율, 중간 비율, 세립분의 특성이 지배적인 비율을 확인할 수 있었으며, 세립분의 함량이 25-40% 정도인 경우에 입자간 상호작용이 잘 이루어지는 것을 관측할 수 있었다.

규칙입자의 충전 -치밀된 탄화규소 소결체의 제조(제 1 보)- (A Study on Packing of Regular Particles - Preparation of Dense Sintered Silicon Carbide (1) -)

  • 문병훈;남건태;최상욱
    • 한국세라믹학회지
    • /
    • 제31권9호
    • /
    • pp.989-994
    • /
    • 1994
  • This study aims at finding the closest packings of regular shape particles such as sphere, circle rod and hexagonal rod type. As the ratio of particle size to container lowered to less than 1/10, the wall effect decreased gradually. The tap density of spherical particles with almost orthorhombic arrangement was 59.5%, while those of circle rod and hexagonal rod type particles were 63.5% and 63.0% respectively. And it was decreased with increasing the aspect ratio of regular particles. The tap density of binary mixtures was larger than that corresponding to the monosized particles packing by about 15%. The tap density of ternary mixtures was larger than that of corresponding to the packing of binary mixtures by about 9%. This work employed the binary mixture of 60% coarse particles and 40% fine particles with size ratio of 1.0 to 1/10 and the ternary mixture of 60% coarse particles, 20% medium and 20% fine particles with size ratio of 1:1/10:1/400 respectively.

  • PDF

에폭시 수지/방향족 아민 경화물의 배합비 변화에 따른 열적 특성 분석 (The Thermal Properties Analysis of the Mixtures Composed with Epoxy Resin and Amine Curing Agent)

  • 김대연;김순천;박영일;김영철;임충선
    • 접착 및 계면
    • /
    • 제15권3호
    • /
    • pp.100-108
    • /
    • 2014
  • 본 연구에서는 비스페놀 A 에폭시 수지/경화제(YD-128/DDM) 조성물의 비율을 조절하여 $170^{\circ}C$의 경화온도에서 접착성능 최적화 조성비를 얻기 위한 실험을 진행하였다. DSC, TGA, DMA, TMA 열분석 장비를 사용하여 YD-128/DDM 혼합물의 당량비 변화가 경화물의 열적 특성에 미치는 영향에 대하여 조사하였으며, 조성물의 경화시간은 YD-128/DDM (1 : 1.1) 조성물을 동적 DSC를 이용하여 측정된 시간당 누적 발열량을 총 발열량으로 나누어 계산한 전환율을 토대로 결정하였다. TGA를 이용한 분해 활성화 에너지 분석에서는 경화물의 DDM 당량비가 증가할수록 열안정성과 열분해 활성화 에너지가 높게 나타났고, DMA와 TMA를 이용한 경화물의 열적 특성 조사 결과에서는 당량비 1 : 1에서 다른 당량비 조건에 비해 우수한 탄성률 및 열팽창성이 관찰되었다. 또한 각기 다른 당량비의 조성물을 $170^{\circ}C$에서 경화하여 중첩 전단 강도를 측정하였다.