• Title/Summary/Keyword: Fine dust (PM-10)

Search Result 223, Processing Time 0.026 seconds

Preventive Effect of Garlic Administration on Respiratory Toxicity Induced through Intratracheal Instillation of Fine Dust (PM10) in Rats (실험동물 랫드를 이용한 미세먼지 기도노출에 따른 호흡기계 독성에 대한 마늘의 예방효과 탐색)

  • Lee, YoonBum;Kim, GeunWoo;Song, YoungMin;Han, YoungHoon;Ha, ChangSu;Lee, JiSun;Kim, MinHee;Son, HyeYoung;Lee, GiYong;Heo, Yong;Kim, ChangYul
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • Objectives: Exposure to fine dust (PM10) could contribute to the occurrence of cardiovascular disease or respiratory abnormalities. Since garlic is known to possess an anti-oxidative stress effect, the present study was performed to evaluate the effect of garlic intake on fine dust-mediated pulmonary toxicity. Methods: Rats were intratracheally instilled with fine dust at 15 mg/kg body weight (BW)/day for five days following five-day intragastric intubation of garlic at 0.7 or 1.4 g/kgBW/day, or 13.1 mg/kgBW/day S-allyl-cysteine (SAC) as a reference component in garlic. Blood and bronchoalveolar lavage fluid (BALF) were collected. Results: Deposit of fine dust was visually and histopathologically observed in the lungs. Body weight gain during the instillation period was significantly lowered in all the groups instilled with fine dust. Neutrophil numbers in blood were significantly elevated in the fine dust alone group, but this alteration was diminished in the groups administered with garlic. Levels of serum glutathione were lower in the rats instilled with fine dust alone, and this decrease in the glutathione level seems dose-dependently compensated among the groups administered with garlic. Similar findings were observed in the BALF with statistical significance. Typical pulmonary histopathological observation related with inflammation was demonstrated in the lungs of the rats exposed to fine dust alone, whereas such histopathologic findings were not improved in the groups administered with garlic. Conclusion: The present study suggests that garlic intake could alleviate fine dust-mediated pulmonary or systemic toxicities. Further investigation is necessary to delineate the mechanism of garlic-mediated effects on pulmonary function.

Estimation of Heavy Metal Contamination by PM10 Inflow Pathways while Asian Dust in Gwangju (광주지역 황사시 미세먼지 유입경로별 중금속 오염도 평가)

  • Yang, Yoon-Cheol;Lee, Se-Haeng;Park, Byoung-Hoon;Jo, Gwang-Un;Yoon, Sang-Hoon;Park, Ji-Young;Jang, Dong;Chong, Ji-hyo;Bae, Seok-Jin;Jeong, Suk-Kyoung
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • The purpose of this study is to investigate the relationship of fine dust PM10 and heavy metals in PM10 in Asian dust flowing into Gwangju from 2013 to 2018. The migration pathways of Asian dust was analyzed by backward trajectory analysis using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model, and the change of heavy metal concentration and heavy metal content per 1 ㎍/㎥ of fine dust PM10 in Gwangju area were analyzed. Also, the characteristics of the heavy metals were analyzed using the correlation between the heavy metals in PM10. As a result of analyzing Asian dust entering the Gwangju region for 6 years, the average concentration of PM10 measured in Asian dust was 148 ㎍/㎥, which was about 4.5 times higher than in non-Asian dust, 33 ㎍/㎥. A total of 13 Asian dust flowed into the Gwangju during 6 years, and high concentration of PM10 and heavy metals in that were analyzed in the C path flowing through the Gobi/Loess Plateau-Korean Peninsula. As a result of the correlation analysis, in case of Asian dust, there was a high correlation between soil components in heavy metals, so Asian dust seems to have a large external inflow. On the other hand, in case of non-Asian dust, the correlation between find dust PM10 and artificial heavy metal components was high, indicating that the influence of industrial activities in Gwangju area was high.

Analysis of Meteorological Characteristics by Fine Dust Classification on the Korean Peninsula, 2015~2021 (2015년~2021년 한반도 고농도 미세먼지 사례의 유형분류에 따른 기상학적 특징 분석)

  • Jee, Joon-Bum;Cho, Chang-Rae;Kim, Yoo-Jun;Park, Seung-Shik
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.119-133
    • /
    • 2022
  • From 2015 to 2021, high-concentration fine dust episodes with a daily average PM2.5 concentration of 50 ㎍ m-3 or higher were selected and classified into 3 types [long range transport (LRT), mixed (MIX) and Local emission and stagnant (LES)] using synoptic chart and backward trajectory analysis. And relationships between the fine particle data (PM2.5 and PM10 concentration and PM2.5/PM10 ratio) and meteorological data (PBLH, Ta, WS, U-wind, and Rainfall) were analyzed using hourly observation for the classification episodes on the Korean Peninsula and the Seoul metropolitan area (SMA). In LRT, relatively large particles such as dust are usually included, and in LES, fine particle is abundant. In the Korean peninsula, the rainfall was relatively increased centered on the middle and western coasts in MIX and LES. In the SMA, wind speed was rather strong in LRT and weak in LES. In LRT, rainfall was centered in Seoul, and in MIX and LES, rainfall appeared around Seoul. However, when the dust cases were excluded, the difference between the LRT and other types of air quality was decreased, but the meteorological variables (Ta, RH, Pa, PBLH, etc.) were further strengthened. In the case of the Korean Peninsula, it is difficult to find a clear relationship because regional influences (topographical elevation, cities and coasts, etc.) are complexly included in a rather wide area. In the SMA, it is analyzed that the effects of urbanization such as the urban heat island centered on Seoul coincide with the sea and land winds, resulting in a combination of high concentrations and meteorological phenomena.

Strength Properties of Fine Dust Adsorption Matrix using Photocatalyst TiO2 Rutile Replacement Ratio (광촉매 TiO2 루타일 타입 치환율에 따른 미세먼지 흡착형 경화체의 강도 특성)

  • Kyoung, In-Soo;Lee, Won-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.174-175
    • /
    • 2019
  • Recently, due to air pollution caused by fine dust, it is considered as a social problem. Increasing fine dust has intensified air pollution, causing many diseases and damages. This year, Seoul, South Korea, reached a severe level of fine dust pollution worldwide. The Ministry of Environment has strengthened the environmental standard for fine dust (PM2.5) from $50{\mu}g/m^3$ to $35{\mu}g/m^3$ since March 2018. When fine dust enters the human body, it causes bronchial or skin elongation such as respiratory allergies, irritable pneumonia, asthma and atopy. In this study, $TiO_2$ rutile with photocatalytic activity was used, and materials prepared by rutile sulfuric acid method were used. The photocatalytic activity rate is 95% or more and the density is $4.1g/cm^3$. The matrix was based on cement, and the substitution rate of $TiO_2$ was 0, 5, 10, 15, 20 (%). The test item is flexural strength and compressive strength.

  • PDF

Comparison of Performance of LSTM and EEMD based PM10 Prediction Model (LSTM과 EEMD 기반의 미세먼지 농도 예측 모델 성능 비교)

  • Jung, Yong-jin;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.510-512
    • /
    • 2022
  • Various studies are being conducted to improve the accuracy of fine dust, but there is a problem that deep learning models are not well learned due to various characteristics according to the concentration of fine dust. This paper proposes an EEMD-based fine dust concentration prediction model to decompose the characteristics of fine dust concentration and reflect the characteristics. After decomposing the fine dust concentration through EEMD, the final fine dust concentration value is derived by ensemble of the prediction results according to the characteristics derived from each. As a result of the model's performance evaluation, 91.7% of the fine dust concentration prediction accuracy was confirmed.

  • PDF

A Study on Environmental Impact Assessment and Improvement Measures Around Construction Waste Intermediate Processing Sites in Rural Areas (농촌지역의 건설폐기물 중간처리 사업장 주변 환경 영향 평가 및 개선방안 연구)

  • Jang, Kyong-Pil;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.65-72
    • /
    • 2024
  • In order to analyze the impact of fine dust generated from a construction waste intermediate processing site on the surrounding areas, diverse types of samples were collected from inside the site and surrounding areas. The impact analysis results of samples are as follows. (1) Compared to the air quality management standards by the Ministry of Environment, the concentration of fine dust within the site was 30 to 46% for PM10 and 14 to 42% for PM2.5, which was not much different from the general air quality level. (2) It was found that PM10 within the site may have a partial effect on the air quality, but when the blocking facilities in the site, wheel washing facilities at vehicle entry and exit route, and sprinkler during working were maintained, the impact on the nearby area was not high. (3) In the case of PM2.5, its concentration was influenced more by the exhaust fumes from work vehicles than fine dust generated during construction waste processing. Since the PM2.5 concentrations in the site and surrounding area were not much different from the general air quality, there was little correlation with the work impact of construction waste intermediate processing sites. (4) Pb, an indicator of heavy metal components, was within 50ng/m3 in all three sites, which was 10% of the domestic management standard and equivalent to the general air quality level. The complaints from residents in nearby areas were filed using indicators based on visual and experiential information in their daily lives, so even if the survey results of environmental impact by the construction intermediate waste processing site are lower than the standard, nearby residents can feel it better than such numerical information. Therefore, specific activities to reduce find dusts should be continuously continued.

Monitoring of Particulate Matter Concentration for Forage Crop Cultivation during Winter Season in Saemangeum (새만금 내 동계 사료작물 재배에 따른 미세먼지 농도 변화 모니터링)

  • Lee, Seong-Won;Kang, Bang-Hun;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.114-124
    • /
    • 2022
  • The Saemangeum has a dry surface characteristic with a low moisture content ratio due to the saline and silt soil, so the vegetation cover is low compared to other areas. In areas with low vegetation cover, wind erosion has a high probability of scattering dust. If the vegetation cover is increased by cultivating crops that can withstand the Saemangeum reclaimed environment, scattering dust can be reduced by reducing the flow rate at the bottom. Thus, the purpose of this study is to analyze the effect of suppressing the generation of fine dust and scattering dust by cultivating winter forage crops on the Saemangeum reclaimed land. While growing 0.5 ha of barley and 0.5 ha of triticale in Saemangeum reclaimed land, the concentration of fine dust was monitored according to agricultural work and growth stage. Changes in the concentrations of PM-10, PM-2.5, and PM-1.0 were monitored on the leeward, the windward and centering on the crop field. As a result of monitoring, PM-1.0 had little effect on crop cultivation. the concentration of PM-10 and PM-2.5 increased according to tillage and harvesting, and tillage had a higher increasing the concentration of PM-10 and PM-2.5 than that of harvesting. According to the growth stage of crops, the effect of suppressing scattering dust was shown, and the effect of suppressing scattering dust was higher in the heading stage than in the seedling stage. So, it was found that there was an effect of suppressing scattering dust other than the effect of land covering. Through this study, it was possible to know about the generation and suppression effect of scattering dust according to crop cultivation.

Variation in chemical composition of Asian dusts on Jeju Island related to their inflow pathways during 2010-2015

  • Song, Jung-Min;Bu, Jun-Oh;Ko, Hee-Jung;Kim, Won-Hyung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.182-193
    • /
    • 2017
  • In order to examine the variation characteristics of chemical compositions in relation to the inflow pathways of Asian dust, $PM_{10}$ and $PM_{2.5}$ aerosols were collected at Gosan site of Jeju Island during the Asian dust days between 2010 and 2015, and their chemical compositions were analyzed. The mean mass concentrations of $PM_{10}$ and $PM_{2.5}$ during Asian dust days were $130.0{\pm}90.2$ and $38.2{\pm}24.7{\mu}g/m^3$, respectively. The composition ratios of major secondary pollutants ($nss-SO_4{^{2-}}$, $NH_4{^+}$, $NO_3{^-}$) were high as 53.7 % for $PM_{10-2.5}$ and 90.6 % for $PM_{2.5}$. When the Asian dusts had been transported to the Korean Peninsula via Loess Plateau of central China, the concentrations of $nss-Ca^{2+}$, $NH_4{^+}$, $nss-SO_4{^{2-}}$, and $NO_3{^-}$ increased more noticeably. Whereas in case when the inflow pathways of Asian dust had been through the Bohai bay, the concentrations of the crustal species such as Al, Fe, and Ca were relatively high in coarse particles. The atmospheric aerosols were acidified largely by sulfuric and nitric acids. They were neutralized mainly by calcium carbonate in coarse particle mode passed through Manchuria area, but by ammonia in fine particle mode passed through Loess plateau and Bohai bay. Ammonium salts are assumed to exist as ammonium sulfate and ammonium nitrate in coarse particles, but mostly as ammonium sulfate in fine particles.

The Impact of Negative Ions and Plant Volume Changes in Space on Fine Dust Purification in the Atmosphere (공기 중 음이온과 공간 내 식물용적 변화가 미세먼지 정화에 미치는 영향)

  • Deuk-Kyun Oh;Jeong-Ho Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.217-226
    • /
    • 2024
  • This study aimed to investigate the influence of anions in the air on the purification of fine dust (PM10 and PM2.5) and to evaluate the effects of plants on the generation of anions in the air and the purification of fine dust. Subsequently, the fine dust reduction models were compared according to each factor and plant volume. The characteristics of anion generation by each factor were observed to be in the order of Type N.I (negative ion generator; 204,133.33 ea/cm3) > Type P30 (plant vol. 30%; 362.55 ea/cm3) > Type C (control; 46.22 ea/cm3), indicating that the amount of anion generation in the anion generator treatment group and the plant arrangement group were approximately 4,417 times and 7 times higher, respectively, than that in the untreated group. Consequently, the fine dust reduction characteristics by anion generation source showed that for PM10, Type NI had a purification efficiency 2.52 times higher than Type C, and Type P30 was 1.46 times higher, while for PM2.5, Type NI had a purification efficiency 2.26 times higher than Type C, and Type P30 was 1.31 times higher. The efficiency of fine dust purification by plant volume was in the order of Type P20 (84.60 minutes) > Type P30 (106.50 minutes) = Type P25 (115.50 minutes) = Type P15 (117.60 minutes) > Type P5 (125.25 minutes) = Type P10 (129.75 minutes), and for ultrafine dust, Type P20 (104.00 minutes) > Type P30 (133.20 minutes) = Type P25 (144.00 minutes) = Type P15 (147.60 minutes) > Type P5 (161.25 minutes) = Type P10 (168.00 minutes). Thus, a quantitative analysis of the anions and plants for purifying fine dust and suggested matters to be considered for future green space planning and plant planting considering fine dust purification.

Characterization of Fine Dust Collection Using a Filter Ventilation (환기장치와 필터를 활용한 미세먼지 제거특성 조사)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.