• Title/Summary/Keyword: Fine aggregates

Search Result 418, Processing Time 0.02 seconds

An Experimental Study on the Physical and Mechanical Properties of Concrete Using Recycled Sand (순환잔골재를 활용한 콘크리트의 물리·역학적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Lee, Seung-Yeop;Kwon, Gu-Hyuk;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • This study examined concrete characteristics depending on the replacement ratio of recycled fine aggregates, which suits the KS F 2573 concrete recycled aggregate standard. As physical properties, slump, air content, changes in the elapse of time and compressive strength were studied in order to provide basic data for activation of recycled fine aggregate recycling. As a result of experimenting recycled fine aggregate concrete, the increase in the replacement ratio of recycled aggregates led to the increase in slump and air content. Also, when the replacement ratio of recycled fine aggregates was 30%, it was judged that there was no problem with constructability. When the replacement ratio was 30%, recycled fine aggregate concrete had a similar tendency to natural aggregate concrete at a compressive strength of 24MPa. When the replacement ratio was 30%, at a target strength of 24MPa, recycled fine aggregate concrete had the same physical characteristics as natural aggregate concrete. This means that a replacement ratio of 30% is appropriate for replacement of recycled fine aggregates. In future, there will be a need to improve the quality of recycled fine aggregates for activating the use of recycled fine aggregates and further research will have to evaluate physical properties of recycled fine aggregate concrete using improved recycled fine aggregates.

Effect of Binder Types and Replacement ratio on the Properties of Blast Slag Mortar Using the Recycled Fine Aggregates (결합재 종류 및 치환율 변화가 순환잔골재 사용 고로슬래그 모르타르의 품질에 미치는 영향)

  • Feng, Hai-Dong;Park, Kyung-Taek;Baek, Dae-Hyun;Kim, Dae-Gun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.77-78
    • /
    • 2011
  • This study is analysis of effect of binder types and replacement ratio on the properties of blast furnace slag mortar using the recycled fine aggregates. The results of the study were was follows. Compressive strength was increased according to an increase in replacement ratio of fine particle cement and gypsum. Absorption was reduced according to an increase in replacement ratio of fine particle cement and recycled aggregate fine powder.

  • PDF

Characterization of Cement Mortar with Plastic Fine Aggregates (플라스틱 잔골재에 의한 시멘트 모르타르 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.383-388
    • /
    • 2019
  • The present study evaluated experimentally the effects of the type and content of plastic fine aggregates on cement mortar in order to utilize waste platics as raw materials of concrete. The two kinds of plastics, LLDPE and HDPE were used, and the mixing rate of plastic fine aggregates was increased 0, 25, 50, 75, 100%. The mortar of LLDPE fine aggregate and HDPE fine aggregate showed similar tendency in flow and material separation resistance, density and water absorption, compressive strength and flexural strength by age. The flowability of mortar mixed with plastic fine aggregates was increased up to 50% but decreased at 75% or more. The material separation resistance of mortar with plastic fine aggregates was also dramatically decreased. On the other hand, due to the low density of plastics, the density of mortar decreased with the mixing of plastic fine aggregates. Due to the low adhesion between plastic fine aggregates and cement, the compressive strength by age was decreased in proportion to the mixing ratio of plastic aggregate, but the flexural strength of each age decreased with maintaining a certain level at 50% or more of plastic fine aggregate content.

Preperties of Mortar Using Ceramic Wastes (도자기 폐기물을 사용한 시멘트 모르터의 특성)

  • 김기형;최재진;최연왕;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.103-106
    • /
    • 1999
  • In this study, the properties of mortar using ceramic wastes as admixtures and fine aggregates are considered experimentally. The main chemical of ceramic wastes is SiO2 and micro structure of ceramic wastes is porous. Absorption of ceramic wastes is higher than that of river sand and specific gravity is lower than that of river sand. Flow value of mortar using ceramic waste admixture and fine aggregates is increased more or less and the strength of mortar using ceramic wastes as fine aggregates is increased.

  • PDF

Strength Characteristics of No-Fine Concrete Containing Recycled Aggregates (재생골재를 함유한 무잔골재 콘크리트의 강도특성)

  • 김태근;이광명;김낙경;고용일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.1-6
    • /
    • 1998
  • Recently, as to destruction and renovation of aged building, waste concretes have been reclaimed near foreshore and filled up underground. Recycling demolished concrete as aggregate helps to settle economic and environmental problems of obtaining superior aggregates from natural sources and to dispose waste concretes. An experimental study was carried out to investigate the strength characteristics of no-fine concrete containing recycled aggregates. The cement-aggregate weight ratios of 1: 5, 1: 6, 1: 7 and water-cement ratios of 30, 35, 40, 45% were chosen for the mix design of no-fine concretes. The compressive and splitting tensile strength at 7 and 28 days were measured for 12 different mixes. On the basis of test results, the optimum mix proportion of no-fine concrete containing recycled aggregates was determined and applied to the production of retaining wall block.

  • PDF

A Study on the Possibility of Securing Alternative Aggregates to Solve the Problem of Supply and Demand of Fine Aggregate in Southeast Region (동남권 잔골재수급 부족 문제를 해결할 대체골재 확보 가능성에 관한 연구)

  • Kim, Ha-Seog;Lee, Do-Heon;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.328-329
    • /
    • 2018
  • The problem of imbalance between supply and demand of fine aggregates in the southeastern region due to the decrease in collection of EEZ(Exclusive Economic Zone) sea sand has been raised. In this paper, the possibility of securing alternative aggregate as a means to solve the problem of fine aggregate shortage in the southeast region was analyzed. As a result of the analysis, the alternative aggregate is easy to manufacture and its quality can be secured. And, it is suitable to use as an aggregate with less environmental burden. In addition, institutional improvement measures are needed for effective utilization and recycling of alternative aggregates.

  • PDF

Influence of the Type of Fine Aggregate on Concrete Properties (잔골재 종류가 콘크리트의 물성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.459-467
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. Following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates are utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the quality of concrete through the analysis of the effects of such fine aggregates on the physical properties of fresh concrete and strength of hardened concrete. Results revealed that crushed sand degraded the fluidity and air entraining of concrete compared to natural aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the physical properties of concrete. The type of fine aggregates appeared to have negligible influence on the strength for W/C of 55%, 45% while crushed sand decreased the strength for W/C of 35% compared to natural aggregates. It analyzed that the combination of crushed sand exhibiting bad grain shape and grade with natural aggregates improved the characteristics of fresh concrete and had negligible influence on the strength.

Properties of Inter-Locking Block with the Contents of the Fine Particles (미립분의 혼입율 변화에 따른 인터로킹 블록의 특성)

  • 이상태;김기철;신병철;이동남;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.171-174
    • /
    • 1999
  • The objective of this study is to investigate the properties of fine particles in the process of producing crushed fine aggregates under various fine particle contents. According to the test results, when fine particles are added as substitution of aggregates by about 10%, it shows that the qualities of interlocking block such as compressive strength, flexural strength and absorption ratio are improved. The application of fine particles provide various advantages in the sides of recycling of materials

  • PDF

Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag

  • Djelloul, Omar Kouider;Menadi, Belkacem;Wardeh, George;Kenai, Said
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.103-121
    • /
    • 2018
  • This paper reports the effects of coarse and fine recycled concrete aggregates (RCA) on fresh and hardened properties of self-compacting concrete (SCC) containing ground granulated blast-furnace slag (GGBFS) as cement replacement. For this purpose, three SCC mixes groups, were produced at a constant water to binder ratio of 0.38. Both fine and coarse recycled aggregates were used as natural aggregates (NA) replacement at different substitution levels of 0%, 25%, 50%, 75% and 100% by volume for each mix group. Each group, included 0, 15% or 30% GGBFS as Portland cement replacement by weight. The SCC properties investigated were self-compactability parameters (i.e., slump flow, T500 time, V-funnel flow time, L-box passing ability and sieve stability), compressive strength, capillary water absorption and water penetration depth. The results show that the combined use of RCA with GGBFS had a significant effect on fresh and hardened SCC mixes. The addition of both fine and coarse recycled aggregates as a substitution up to 50% of natural aggregates enhance the workability of SCC mixes, whereas the addition from 50 to 100% decreases the workability, whatever the slag content used as cement replacement. An enhancement of workability of SCC mixes with recycled aggregates was noticed as increasing GGBFS from 0 to 30%. RCA content of 25% to 50% as NA replacement and cement replacement of 15% GGBFS seems to be the optimum level to produce satisfactory SCC without any bleeding or segregation. Furthermore, the addition of slag to recycled concrete aggregates of SCC mixes reduces strength losses at the long term (56 and 90 days). However, a decrease in the capillary water absorption and water permeability depth was noticed, when using RCA mixes with slag.

Hydroelectric Sorting Process is coal Gasification Slag Effect on the Quality of fine Aggregates (수력선별 공정이 석탄 가스화 용융 슬래그 잔골재 품질에 미치는 영향)

  • Hu, Yun-Yao;Kim, Su-Hoo;Han, Jun-Hui;Kim, Jung;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.120-121
    • /
    • 2021
  • This study examines the performance of the pre-treatment process system to use CGS, a by-product generated in IGCC, as a concrete fine aggregate for construction materials, on the quality of CGS fine aggregate. As a result of the analysis, it is judged that the quality of fine aggregates of CGS can be improved at both density, absorption rate, and 0.08mm body passage amount after the hydroelectric screening process using water as a medium during the pretreatment process. It is believed that it can be used as basic data for national standard certification of CGS fine aggregates in the future.

  • PDF