• Title/Summary/Keyword: Fine Positioning

Search Result 98, Processing Time 0.031 seconds

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

Vision and force/torque sensor fusion in peg-in-hole using fuzzy logic (삽입 작업에서 퍼지추론에 의한 비젼 및 힘/토오크 센서의 퓨젼)

  • 이승호;이범희;고명삼;김대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.780-785
    • /
    • 1992
  • We present a multi-sensor fusion method in positioning control of a robot by using fuzzy logic. In general, the vision sensor is used in the gross motion control and the force/torque sensor is used in the fine motion control. We construct a fuzzy logic controller to combine the vision sensor data and the force/torque sensor data. Also, we apply the fuzzy logic controller to the peg-in-hole process. Simulation results uphold the theoretical results.

  • PDF

Activity Type Detection Of Random Forest Model Using UWB Radar And Indoor Environmental Measurement Sensor (UWB 레이더와 실내 환경 측정 센서를 이용한 랜덤 포레스트 모델의 재실활동 유형 감지)

  • Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.899-904
    • /
    • 2022
  • As the world becomes an aging society due to a decrease in the birth rate and an increase in life expectancy, a system for health management of the elderly population is needed. Among them, various studies on occupancy and activity types are being conducted for smart home care services for indoor health management. In this paper, we propose a random forest model that classifies activity type as well as occupancy status through indoor temperature and humidity, CO2, fine dust values and UWB radar positioning for smart home care service. The experiment measures indoor environment and occupant positioning data at 2-second intervals using three sensors that measure indoor temperature and humidity, CO2, and fine dust and two UWB radars. The measured data is divided into 80% training set data and 20% test set data after correcting outliers and missing values, and the random forest model is applied to evaluate the list of important variables, accuracy, sensitivity, and specificity.

Kalman Filter-Based Ensemble Timescale with 3- Hydrogen Masers

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.261-272
    • /
    • 2020
  • A Kalman filter algorithm is used for the generation of an ensemble timescale with three hydrogen masers maintained in KRISS. Allan deviation curves of three pairs of clocks were obtained by a three-cornered hat method and were used as reference curves for determination of parameters of the Kalman filter-based timescale. The ensemble timescale equation of a 3-clock system was established, and the clocks' phases estimated by the Kalman filter were used as the prediction time of each clock in the equation. The weight of each clock was determined inversely proportional to the Allan variance calculated with the clocks' phases. The Allan deviation of the weighted mean was 1.2×10-16 at the averaging time of 57,600 s. However when we made fine adjustments of the clocks' weight, the minimum Allan deviation of 2×10-17 was obtained. To find out the reason of the great improvement in the frequency stability, additional researches are in progress theoretically and experimentally.

Estimation of Total Electron Content in the Ionosphere over the Korean Peninsula using Permanent GPS Stations Operated by Ministry of Land, Transport and Maritime Affairs (국토해양부 GPS 상시관측소를 활용한 한반도 전리층의 총전자수 추정)

  • Kim, Kyeong-Hui;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.149-155
    • /
    • 2009
  • To quantitatively analyze the positioning error due to the ionosphere over the Korean peninsula, we created 2-dimensional ionosphere map using 44 permanent Global Positioning System(GPS) stations operated by Ministry of Land, Transport, and Maritime Affairs. We estimated Vertical Total Electron Content(VTEC) in a fine rectangular grids of $0.1^{\circ}{\times}0.1^{\circ}$ resolution. The observables we used were phase-leveled pseudoranges which are linear combinations of pseudoranges and carrier phases. VTECs were computed for five days during January 25-29, 2003 using the data from 45 permanent stations. In comparison with the Global Ionosphere Map of the Center for Orbit Determination in Europe, RMS differences were at the level of 8 TECU(TEC Unit).

  • PDF

A study on the positioning of fine scintillation pixels in a positron emission tomography detector through deep learning of simulation data

  • Byungdu Jo;Seung-Jae Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1733-1737
    • /
    • 2024
  • In order to specify the location of the scintillation pixel that interacted with gamma rays in the positron emission tomography (PET) detector, conventionally, after acquiring a flood image, the location of interaction between the scintillation pixel and gamma ray could be specified through a pixel-segmentation process. In this study, the experimentally acquired signal was specified as the location of the scintillation pixel directly, without any conversion process, through the simulation data and the deep learning algorithm. To evaluate the accuracy of the specification of the scintillation pixel location through deep learning, a comparative analysis with experimental data through pixel segmentation was performed. In the same way as in the experiment, a detector was configured on the simulation, a model was built using the acquired data through deep learning, and the location was specified by applying the experimental data to the built model. Accuracy was calculated through comparative analysis between the specified location and the location obtained through the segmentation process. As a result, it showed excellent accuracy of about 85 %. When this method is applied to a PET detector, the position of the scintillation pixel of the detector can be specified simply and conveniently, without additional work.

Design and Control of Ultra-precision Dual Stage with Air bearings and Voice coil motor for nm scanning system (나노 정밀도 스캐닝 용 공기베어링과 보이스 코일 모터의 초정밀 이중 스테이지 설계 및 제어)

  • Kim K.H.;Choi Y.M.;Kim J.J.;Lee M.G.;Lee S.W.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1883-1886
    • /
    • 2005
  • In this paper, a decoupled dual servo (DDS) stage for ultra-precision scanning system with large working range is introduced. In general, dual servo systems consist of a fine stage for short range and a coarse stage for long range. The proposed DDS also consists of a $XY\theta$ fine stage for handling and carrying workpieces and one axis coarse stage. Its coarse stage consists of air bearing guide system and a coreless linear motor with force ripple. The fine has four voice coil motors(VCM) as its actuator. According to a VCM's nature, there are no mechanical connections between coils and magnetic circuits. Moreover, VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about $25mm^2$. To break that hurdle, the coarse stage with linear motors is used to move the fine about 500mm. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. With MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. And for their movements without any frictions, guide systems of the DDS are composed of air bearings. To get precisely their positions, a linear scale with 5nm resolution are used for the coarse stage's motion and three plane mirror laser interferometers with 5nm for the fine's $XY\theta$ motions. With them, on scanning the two stages have same trajectories. The control algorithm is named Parallel method. The embodied ultra-precision scanning system has sub 100nm following error and in-positioning stability.

  • PDF

Nanoscale Dynamics, Stochastic Modeling, and Multivariable Control of a Planar Magnetic Levitator

  • Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents a high-precision magnetically levitated (maglev) stage to meet demanding motion specifications in the next-generation precision manufacturing and nanotechnology. Characterization of dynamic behaviors of such a motion stage is a crucial task. In this paper, we address the issues related to the stochastic modeling of the stage including transfer function identification, and noise/disturbance analysis and prediction. Provided are test results on precision dynamics, such as fine settling, effect of optical table oscillation, and position ripple. To deal with the dynamic coupling in the platen, we designed and implemented a multivariable linear quadratic regulator, and performed time-optimal control. We demonstrated how the performance of the current maglev stage can be improved with these analyses and experimental results. The maglev stage operates with positioning noise of 5 nm rms in $\chi$ and y, acceleration capabilities in excess of 2g(20 $m/s^2$), and closed-loop crossover frequency of 100 Hz.

The design of magnetic circuit of magnetostrictive actuator using finite element method (유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계)

  • 이석호;박영우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

Vibration Control of the Rotation Position Mechanism with Dual Actuator for High Precision Control (고속/고정밀 위치 제어를 위한 이중 구동기를 이용한 회전 이송기구의 진동 제어)

  • Lee, Yong-Gwon;Jo, Won-Ik;Yang, Hyeon-Seok;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 2001
  • In this paper, a novel dual-type positioning mechanism using a voice coil motor(VCM) and a piezoelectric actuator is proposed for optical disk drive or near-field recording type drive. The VCM is used for a coarse motion actuator and the piezoelectric actuator, "S" configuration deflection motion when voltage applied, is used for a fine motion actuator with self-sensing technique, which allows it to sense and actuate simultaneously in a closed loop frame work. When the VCM rotates and stops, a position feedback control algorithm is adopted to further control residu vibration. The performance of the control scheme is confirmed through simulations and experiments.

  • PDF