• 제목/요약/키워드: Fine Positioning

검색결과 98건 처리시간 0.024초

듀얼스테이지를 이용한 고정밀도의 하이브리드 밀링머신 (High Precision Hybrid Milling Machine Using Dual-Stage)

  • 정병묵;여인주;고태조;이천
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.39-46
    • /
    • 2008
  • High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high speed on a large workspace as well as high precision positioning. For machining systems having a long stroke with ultra precision, a dual-stage system including a global stage (coarse stage) and a micro stage (fine stage) is designed in this paper. Though linear motors have a long stroke and high precision feed drivers, they have some limitations for submicron positioning. Piezo-actuators with high precision also have severe disadvantage for the travel range, and the stroke is limited to a few microns. In the milling experiments, the positional accuracy has been readily achieved within 0.2 micron over the typical 20 mm stroke, and the path error over 2 micron was reduced within 0.2 micron. Therefore, this technique can be applied to develop high precision positioning and machining in the micro manufacturing and machining system.

채널 상태 정보를 이용한 딥 러닝 기반 실내 위치 확인 시스템 (Deep Learning-based Indoor Positioning System Using CSI)

  • 장중봉;최승원
    • 디지털산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.1-7
    • /
    • 2020
  • Over the past few years, Wi-Fi signal based indoor positioning system (IPS) has been researched extensively because of its low expenses of infrastructure deployment. There are two major aspects of location-related information contained in Wi-Fi signals. One is channel state information (CSI), and one is received signal strength indicator (RSSI). Compared to the RSSI, the CSI has been widely utilized because it is able to reveal fine-grained information related to locations. However, the conventional IPS that employs a single access point (AP) does not exhibit decent performance especially in the environment of non-line-of-sight (NLOS) situations due to the reliability degeneration of signals caused by multipath fading effect. In order to address this problem, in this paper, we propose a novel method that utilizes multiple APs instead of a single AP to enhance the robustness of the IPS. In our proposed method, a hybrid neural network is applied to the CSIs collected from multiple APs. By relying more on the fingerprint constructed by the CSI collected from an AP that is less affected by the NLOS, we find that the performance of the IPS is significantly improved.

A Precision Micro-Positioning System by Using Hinge Mechanism

  • Choi, Hyeun-Seok;Lee, Hak-Joon;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1344-1348
    • /
    • 2003
  • A precision micro-positioning system with a high displacement resolution and wide motion range has been required for industrialized applications in variety fields. This paper discusses the design of a precision micro-rotation stage with flexure hinges. Proposed system is applied to grinding machine for micro parts. Rotational motion is generated with this system. For this systems having a full rotation motion with high precision, a dual servo system with a coarse stage and a fine stage is proposed.

  • PDF

초미세 위치결정시스템을 이용한 실리콘 웨이퍼의 파괴거동에 관한 연구 (A Study on the Fracture behavior in Silicon Wafer using the Ultra-Precision Micro Positioning System)

  • 이병룡
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.38-44
    • /
    • 2000
  • The background of this study lies in he investigation of the formation mechanism of ductile mode(nkanometer-size) chips of brittle materials such as fine ceramics glass and silicon. As the first step to achieve this purpose this paper intends to observe the micro-deformation behavior of these materials in sub${\mu}{\textrm}{m}$ depth indentation tests using a diamond indentor. In this study it was developed Ultra-Micro Indentation. Device using the PZT actuator. Experimentally by using the Ultra-Micro Indentation device the micro fracture behavior of the silicon wafer was investigated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation appartus.

  • PDF

이단 압전 구동기를 가진 이중 구동기의 진동 및 정밀위치제어 (Vibration and precision position control of dual actuators with parallel type piezoactuator)

  • 이용권;조원익;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.475-480
    • /
    • 2000
  • A new positioning mechanism with Parallel type actuator using piezoelectric material and with dual type actuators using voice coil motor (VCM) and piezoactuator is proposed for optical disk drive or near-field recording type drive, and high speed position and vibration control are investigated. Parallel type bimorph piezoactuator is used as a fine motion actuator with self-sensing technique, which allows a piezoelectric material to concurrently sense and actuate in a closed loop frame work, and positive position feedback control algorithm is adopted to further control residual vibration. For positioning control of VCM, PID control algorithm is adopted.

  • PDF

포 구동시스템에 대한 모드 스위칭 제어기 설계 (Design of a Mode Switching Controller for Gun Servo System)

  • 임정빈;백승문;유준
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.425-430
    • /
    • 2006
  • To meet an increasing demand for high performance in gun dynamic plant, both a precise and a fast response positioning are strongly required for the gun servo system. A mode switching control(MSC) scheme, which includes a fine stabilizing controller, fast positioning one and a switching function, is widely used to meet this requirement. Stabilization is performed through PID controller, while a time optimal control method is used for target designation. In this paper, a modified PTOS(Proximate Time Optimal Servomechanism) algorithm is derived so as to accommodate the damping term in the gun plant model. Also, applying a mode switching strategy, the bumpless transfer is made possible when the controller switches from PTOS to PID. To show the effectiveness of the overall control system, simulation results are given including the gun dynamics.

포/포탑 구동장치의 모드 스위칭 제어기 설계 (Mode Switching Control Design for Gun/Turret Driving System)

  • 백승문;김지영;임정빈;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.33-37
    • /
    • 2004
  • To meet an increasing demand for high performance in gun dynamic plant, both a precise and a fast response positioning are strongly required for the gun servomechanism control. A mode switching control(MSC) system, which includes a fine stabilizing controller, fast positioning one and a switching function, is widely used to meet this requirement. Stabilization is performed through PID controller, while proximate time optimal servo(PTOS) is used for target designation. Because gun dynamic have large damping comparing to acceleration, PTOS algorithm with damping is newly derived. This paper adopts the initial value compensation method that improve the transient response after switching. Some simulation results are given to show the effectiveness of our scheme.

  • PDF

백색광의 제한 간섭성을 이용한 초정밀 위치결정 (Ultra-precision Positioning By Using Coherence of White Light)

  • 박현구;강민구;김승우
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.995-1001
    • /
    • 1997
  • In this paper, a new positioning method with incoherence of white light is described and practically implemented to attach VCR heads on a drum very accurately. This method utilizes the Michelson Interferometer which uses white light with short coherence length as the light source to generate interference fringes only in case the optical path difference is shorter than about 2.mu.m. The course position of VCR heads and the fine are determined by appearance and visibility of interference fringes, respectively. The appearance are detected by an image processing technique using FFT(Fast Fourier Transform).

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

영상 측정 데이터를 이용한 위치보정 레이저 가공시스템 개발 (Development of Auto Positioning Laser System by using Image Measurement Data)

  • 표창률
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.36-40
    • /
    • 2013
  • Recently, electronic equipments become smaller, more functional, and more complex than before. As these trends, MLC(multi-layer ceramic) circuit has been emerged to a promising technology in semiconductor inspection industry. Especially, multi-layer ceramic which is consisted of many fine-pitch multi-hole is used to produce a semiconductor inspection unit. The hole is processed by UV laser. But, working conditions are changed all the time. Therefore real time measurement of fine-pitch multi-hole is very important method for ensuring performance. In this paper we found the best method for illuminating and auto focusing. And, we verified our equipment.