• Title/Summary/Keyword: Fine Particulate Matter

Search Result 282, Processing Time 0.025 seconds

Design and performance of Low-Volume PM10/2.5/1.0 Trichotomous Sampler Inlet (PM10/2.5/1/0 Trichotomous 도입부 설계 밀 성능평가)

  • Song Chang-Byeong;Kim Hyeon-Tae;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.358-359
    • /
    • 2002
  • Particulate matter smaller than $10{\mu}textrm{m}$ in aerodynamic diameter (PM10) is known as thoracic particles that are capable of reaching the thoracic region of humans. PM10 is further divided into two size ranges, which are fine particles (nuclei mode plus accumulation mode) and coarse particles, based on different sources and chemical composition. Fine particles can penetrate deep into the alveolar region of the human lungs, while coarse particles be deposited in the upper respiratory system. (omitted)

  • PDF

Development of a High-Volume Simultaneous Sampler for Fine and Coarse Particles using Virtual Impactor and Cyclone Techniques

  • Okuda, Tomoaki;Shishido, Daiki;Terui, Yoshihiro;Fujioka, Kentaro;Isobe, Ryoma;Iwaki, Yusuke;Funato, Koji;Inoue, Kozo
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.78-86
    • /
    • 2018
  • Filter-based sampling techniques are the conventional way to collect particulate matter, but particles collected and entangled in the filter fibers are difficult to be removed and thus not suited for the following cell- and animal-based exposure experiments. Collecting aerosol particles in powder form using a cyclone instead of a filter would be a possible way to solve this problem. We developed a hybrid virtual-impactor/cyclone high-volume fine and coarse particle sampler and assessed its performance. The developed system achieved 50% collection efficiency with components having the following aerodynamic cut-off diameters: virtual impactor, $2.4{\mu}m$; fine-particle cyclone, $0.18-0.30{\mu}m$; and coarse-particle cyclone, $0.7{\mu}m$. The virtual impactor used in our set-up had good $PM_{2.5}$ separation performance, comparable to that reported for a conventional real impactor. The newly developed sampler can collect fine and coarse particles simultaneously, in combination with exposure testing with collected fine- and coarse-particulate matter samples, should help researchers to elucidate the mechanism by which airborne particles result in adverse health effect in detail.

Analysis of Recent Trends of Particulate Matter Observed in Busan - Comparative Study on Busan vs. Seoul Metropolitan Area (I) (부산지역 미세먼지 최근 경향 분석 - 수도권과 비교연구 (I))

  • Kim, Jong-Min;Jo, Yu-Jin;Yang, Geum-Hee;Heo, Gookyoung;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.177-189
    • /
    • 2020
  • We analyzed the recent characteristics of Particulate Matter (PM) including PM10 (PM with diameter of less than 10 ㎛) and PM2.5 (PM with diameter of less than 2.5 ㎛) observed in Busan metropolitan area, and compared them with those measured in Seoul metropolitan area. This analysis includes the monthly, seasonal, and annual variations and differences, in emissions and chemical compositions observed in both Busan and Seoul areas. Synoptic meteorological conditions were investigated at the time when high PM concentrations occurred in each of the two areas. The results showed clearly decreasing trends of annual mean concentrations with strong seasonal variations: lower in summer and higher in winter in both areas. In comparison with Seoul, the seasonal variation in Busan demonstrated relatively lower, but showed greater summer fluctuations than in Seoul metropolitan area. This is implying the importance of secondary generation of PM in summer via active photochemical reaction in Busan area. In high concentration days, Busan's chemical composition of sulfate was higher than that of nitrate in summer, whereas nitrate was higher than sulfate in Seoul. The ratios of NO3- to SO42-(N/S ratio) showed lower in Busan approximately by a factor of 1/2(half of N/S ratio) in Busan compared with that in Seoul. Others such as synoptic characteristics and emission differences were also discussed in this study.

Satellite-based Assessment of Ecosystem Services Considering Social Demand for Reduction of Fine Particulate Matter in Seoul

  • Lim, Chul-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.421-434
    • /
    • 2022
  • Fine particulate matter (PM2.5) has been the biggest environmental problem in Korea since the 2010s. The present study considers the value of urban forests and green infrastructure as an ecosystem service (ES) concept for PM2.5 reduction based on satellite and spatial data, with a focus on Seoul, Korea A method for the spatial ES assessment that considers social demand variables such as population and land price is suggested. First, an ES assessment based on natural environment information confirms that, while the vitality of vegetation is relatively low, the ES is high in the city center and residential areas, where the concentration of PM2.5 is high. Then, the ES assessment considering social demand (i.e., the ESS) confirms the existence of higher PM2.5 values in residential areas with high population density, and in main downtown areas. This is because the ESS of urban green infrastructure is high in areas with high land prices, high population density, and above-average PM2.5 concentrations. Further, when a future green infrastructure improvement scenario that considers the urban forest management plan is applied, the area of very high ESS is increased by 74% when the vegetation greenness of the green infrastructure in the residential area is increased by only 20%. This result suggests that green infrastructure and urban forests in the residential area should be continuously expanded and managed in order to maximize the PM2.5 reduction ES.

Dust collection optimization of tunnel cleaning vehicle with cyclone-based prefilter (사이클론 전처리부를 지닌 터널집진차량의 집진효율 최적화)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.679-686
    • /
    • 2018
  • A new dust cleaning vehicle is needed to remove fine and ultra-fine particulate matter in subway tunnels. Therefore, the recently developed tunnel cleaning vehicle is equipped with an efficient suction system and cyclone-based prefilter to handle ultra-fine particles. To treat various sizes of particulate matter with an underbody suction system, this paper proposes a cyclone-based prefilter in the suction system and validates the dust removal efficiency through Computational Fluid Dynamics (CFD) analysis using ANSYS FLUENT. Using the created surface and volume mesh, various particle sizes, materials, and fan flow rates, the particles were tracked in the flow with a discrete phase model. As a result, the dust cleaning vehicle at a normal operational speed of 5km/h requires at least a fan flow rate of $1500m^3/min$ and 100mm of suction inlet height from the tunnel track floor. Those suction modules and cyclone-based prefilters in the dust cleaning vehicle reduces the dust accumulation load of the electric precipitator and helps remove the accumulated fine and ultra-fine dust in the subway tunnel.

An Electrostatic Diesel Particulate Filtration System for Removal of Fine Particulate Matters from Marine Diesel Engines (선박 디젤엔진 배출 미세먼지 저감을 위한 정전 여과 매연 집진기 개발에 관한 연구)

  • Younghun Kim;Gunhee Lee;Kee-Jung Hong;Yong-Jin Kim;Hak-Jun Kim;Inyong Park;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.101-110
    • /
    • 2023
  • In order to reduce particulate matters (PM) from marine diesel engines, we developed novel electrostatic diesel particulate matter filtration system. Electrostatic diesel particulate filtration (DPF) system consists of electrostatic charger and filtration part. The electrostatic charger and filtration part are composed of a metal discharge electrode and a metal fiber filter (porosity: 68.1-86.1%), respectively. In the electrostatic charger part, diesel soot particles are reduced by electrostatic force. The filtration part after electrostatic charger part reduces diesel soot particles through inertial and diffusion forces. The filtration efficiency of electrostatic DPF system was examined through the experiments using engine dynamometer system (300 kW) and ship (200 kW). The PM reduction efficiencies due to inertial and electrostatic forces showed about 70-75% and 80-90%, respectively, according to the RPM of the engine. The differential pressure of the electrostatic DPF system applied to the ship was about 1-9 mbar, which was less than the allowable differential pressure for ship engines in South Korea (100 mbar). The results show that the electrostatic DPF system is suitable for application to the PM reduction emitted from ships.

Dust Removal Efficiency and Operation Characteristics of Metal Filters for Coal Gasification Fines and Standard Dust Sample (금속필터를 사용한 석탄가스화 분진 및 표준 분진의 집진 효율과 운전특성)

  • Yun, Yongseung;Chung, Seok Woo;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Demand for improving dust removal efficiency in coal power plants and the dust removal requirement to the level of capturing fine particulate matter and ultrafine particles have been increasing. While bag filter and electrostatic precipitator (ESP) are typically used for dust removal in the processes operating at atmospheric pressure, metal filters or ceramic filters are employed for dust which is produced at high temperature/pressure system as in coal gasification. For dust removal at the high temperature/pressure conditions, two metal filters of five compressed/sintered layers were manufactured and applied to analyze the dust removal characteristics. Manufactured metal filters exhibited more than 99% dust removal efficiency on coal gasification fine particulates in mass basis. To evaluate the fine particulate removal efficiency of less than $2.5{\mu}m$, JIS standard fine sample was used and confirmed the removal efficiencies of 97% and 70~82% on the fine particulates of $1{\sim}2.5{\mu}m$ size range. For the size range of less than $1{\mu}m$, dust removal efficiency of manufactured metal filters significantly degraded with smaller particle size. Improving methods are proposed to overcome the limitations in applying to fine dust of less than $1{\mu}m$.

Experiment of Air-Shower to Reduce Particulate Matter in Apartment Housing (공동주택에서 미세먼지 저감을 위한 에어샤워 성능실험)

  • PARK, JIN CHUL;Chung, Hong Goo
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • High levels of fine dust is an increasing health concern in major cities such as Seoul. To improve the indoor air quality of apartments, this study examined the ability of an air shower system installed in an apartment unit to remove fine dust (as defined by ISO 12103-A2) from various clothing items of building occupants entering their apartment. Results of the experiment indicate that an air shower system is effective in removing final dust from clothing after one pass through the system. The fine dust removal efficiency for various clothing items was 74% for a dress suit, 70.6% for hiking clothes, 63.3% for knit-wear, 50.5% for a cotton t-shirt, and 38.8% for a coat. Fine dust removal efficiency increased with a second and third pass through the air shower system by an average of 9.1 and 13.9 percentage points respectively compared to a single pass through the system.

A Study on Particulate Matter Reduction Effects of Vegetation Bio-Filters by Airflow Volume (공조풍량별 식생바이오필터의 입자상 오염물질 저감효과 연구)

  • Choi, Boo Hun;Kim, Tae Han
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2021
  • As the influence of fine dust on society spreads gradually, the public's interest in indoor air is increasingly rising. Air-purifying plants are drawing keen attention due to their natural purifying function enabled by plant physiology. However, as their fine dust reduction mechanism is limited to adsorption only, vegetation bio-filters that optimize purification effects through integration with air-conditioning systems is rising as an alternative. In accordance with the relevant standard test methods, this study looked into the fine dust reduction assessment method by air-conditioning airflow volume that can be used for the industrial spread of vegetation bio-filters. In the case of PM10 at 300 ㎍/m3, it was in the order of EG-B(3,500CMH, 29 min.) < EG-A (2,500CMH, 37 min.) < CG(0CMH, 64 min.) for reaching the maintenance level (100 ㎍/m3) of publicly used facilities. For reaching the WHO Guideline(50 ㎍/m3) requirement, it was in the order of EG-B (51 min.) < EG-A (160 min.) < CG (170 min.). In the case of PM2.5, it was in the order of EG-B (26 min.) < EG-A (33 min.) < CG (57 min.) for reaching the maintenance level (50 ㎍/m3) of publicly used facilities. It was in the order of EG-B (48 min) < EG-A (140 min) < CG (158 min) for reaching the WHO Guideline (25 ㎍/m3) requirement. The findings from the analysis showed that fine dust can be reduced most efficiently when the system is operated at 3,500CMH level. The limitation of this study is that due to the absence of a way of assessing the stress of plants in vegetation bio-filters, generating optimal air-conditioning air flow of the relevant system and economics analysis against the existing facility-type air purification system have been clarified, which should be explored further though follow-up studies.

Characteristics According to the Size Distributions of Respirable Particulate During Yellow Sand Episode in Kosan, Jeju Island (황사기간도안 제주, 고산지역에서 호흡성 분진의 입자 분포 특성)

  • Kim, Jeong-Ho;Ahn, Jun-Young;Han, Jin-Seok;Lee, Jeong-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2003
  • This study was intended as an investigation of characteristics of background site atmospheric respirable particulate matters(RPM), and fine particles(<2.5 ${\mu}{\textrm}{m}$). The particle size distributions during the phenomenon of Yellow Sand(YS) occurs from April, 2001. Atmospheric aerosol particulate matter was directly collected on the Jeju island between 1 to 30, April, 2001 using an eight-stage cascade impacter(particle size range: 0.43-11 ${\mu}{\textrm}{m}$), and cyclone separator(cut size: 2.5, 10 ${\mu}{\textrm}{m}$). The episode of YS observed in background monitoring site, Kosan and appeared 2 times at sampling period. The mass concentrations of fine and coarse particles for YS episode were 34.2 and 59.6 $\mu\textrm{g}$/㎥, respectively, which were significantly increased amounts compared to 13.3 and 13.0 $\mu\textrm{g}$/㎥ for NonYS(NYS). Most size distributions had two peaks, one at 0.43∼.65 ${\mu}{\textrm}{m}$ and the other at 3.3${\mu}{\textrm}{m}$4.7 ${\mu}{\textrm}{m}$. The result of analysis of water-soluble ion component indicated that sulfate was mainly ion component, but nitrate and calcium ion was significantly increased at the YS episode.