• 제목/요약/키워드: Fine Particulate Matter

검색결과 285건 처리시간 0.023초

지하역사 내 승하차 인원에 따른 식생바이오필터의 미세먼지 저감효과와 운전전략 (The Fine Dust Reduction Effect and Operational Strategy of Vegetation Biofilters Based on Subway Station Passenger Volume)

  • 이재영;김예진;김미주
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.13-18
    • /
    • 2023
  • A subway station is a prominent multi-purpose facility where the quantitative management of fine dust, generated by various factors, is conducted. Recently, eco-friendly air purification methods using air-purifying plants are being discussed, with the focus on biofiltration through vegetation. Previous research in this field has confirmed the reduction effects of transition metals such as Fe, which have been identified as harmful to human health. This study aimed to identify the sources of fine dust dispersion within subway stations and derive an efficient operational strategy for air-purifying plants that takes into account the behavior characteristics of fine dust within multi-purpose facilities. The experiment monitored regional fine dust levels through IAQ stations established based on prior research. Also, the data was analyzed through time-series and correlation analyses by linking it with passenger counts at subway stations and the frequency of train stops. Furthermore, to consider energy efficiency, we conducted component-specific power consumption monitoring. Through this study, we were able to derive the optimal operational strategy for air-purifying plants based on time-series comprehensive analysis data and confirm significant energy efficiency.

  • PDF

Identifying Suspended Particulate Matters in an Urban Coastal System: Significance and Application of Particle Size Analysis

  • Ahn, Jong-Ho
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.167-174
    • /
    • 2012
  • In situ particle size spectra are obtained from two sequent cruises in order to evaluate the physical consequences of suspended particulate matters caused by episodic storm runoff from the Santa Ana River watershed, an urbanized coastal watershed. Suspended particles from various sources including surface runoff, near-bed resuspension, and phytoplankton are identified in empirical orthogonal function (EOF) analysis and an entropy-based parameterization (Shannon entropy). The first EOF mode is associated with high turbidity and fine particles as indicated by the elevated beam attenuation near the Santa Ana River and Newport Bay outlets, and the second EOF mode explains the suspended sediment dispersal and particle coarsening at the near-surface plume. Chlorophyll particles are also distinguished by negative magnitudes of the first EOF mode, which is supported by the relationship between fluorescence and beam attenuation. The integrated observation between the first EOF mode and the Shannon entropy index accentuates the characteristics of two different structures and/or sources of sediment particles; the near-surface plumes are originated from runoff water outflow, while the near-bottom particles are resuspended due to increased wave heights or mobilizing bottom turbidity currents. In a coastal pollution context, these methods may offer useful means of characterizing particle-associated pollutants for purposes of source tracking and environmental interpretation.

Short-term Effect of Fine Particulate Matter on Children's Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis

  • Lim, Hyungryul;Kwon, Ho-Jang;Lim, Ji-Ae;Choi, Jong Hyuk;Ha, Mina;Hwang, Seung-sik;Choi, Won-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • 제49권4호
    • /
    • pp.205-219
    • /
    • 2016
  • Objectives: No children-specified review and meta-analysis paper about the short-term effect of fine particulate matter ($PM_{2.5}$) on hospital admissions and emergency department visits for asthma has been published. We calculated more precise pooled effect estimates on this topic and evaluated the variation in effect size according to the differences in study characteristics not considered in previous studies. Methods: Two authors each independently searched PubMed and EMBASE for relevant studies in March, 2016. We conducted random effect meta-analyses and mixed-effect meta-regression analyses using retrieved summary effect estimates and 95% confidence intervals (CIs) and some characteristics of selected studies. The Egger's test and funnel plot were used to check publication bias. All analyses were done using R version 3.1.3. Results: We ultimately retrieved 26 time-series and case-crossover design studies about the short-term effect of $PM_{2.5}$ on children's hospital admissions and emergency department visits for asthma. In the primary meta-analysis, children's hospital admissions and emergency department visits for asthma were positively associated with a short-term $10{\mu}g/m^3$ increase in $PM_{2.5}$ (relative risk, 1.048; 95% CI, 1.028 to 1.067; $I^2=95.7%$). We also found different effect coefficients by region; the value in Asia was estimated to be lower than in North America or Europe. Conclusions: We strengthened the evidence on the short-term effect of $PM_{2.5}$ on children's hospital admissions and emergency department visits for asthma. Further studies from other regions outside North America and Europe regions are needed for more generalizable evidence.

익산지역에서 봄철 비황사기간 중 입경별 대기먼지농도와 이온조성 (Mass Concentration and Ion Composition of Size-segregated Particulate Matter during the Non-Asian Dust Storm of Spring 2007 in Iksan)

  • 강공언;김남송;이현주
    • 한국환경보건학회지
    • /
    • 제34권4호
    • /
    • pp.300-310
    • /
    • 2008
  • In order to further determine the mass concentration and ion composition of size-segregated particulate matter (PM) during the non-Asian dust storm of spring, $PM_{2.5}$ (fine particle), $PM_{10-2.5}$ (coarse particle), and $PM_{over-10}$ (PM with an aerodynamic diameter larger than $10{\mu}m$) were collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in the spring season of 2007 in the Iksan area. During the sampling period from 5 April to 21 April, a total of 34 samples for size-segregated PM were collected, and then measured for PM mass concentrations by gravimetric measurements and for water-soluble inorganic ion species by using ion chromatography. Average mass concentrations of $PM_{2.5}$, $PM_{10-2.5}$, $PM_{over-10}$ were $35.4{\pm}11.5{\mu}g/m^3$, $13.3{\pm}5.5{\mu}g/m^3$ and $9.5{\pm}4.7{\mu}g/m^3$, respectively. On average, $PM_{2.5}$ accounted for 74% of $PM_{10}$. Compared with the literature from other areas in Korea, the measured concentration of $PM_{2.5}$ were relatively high. Water-soluble inorganic ion fractions in $PM_{2.5}$, $PM_{10-2.5}$, and $PM_{over-10}$ were found to be 47.8%, 28.5%, and 14.7%, respectively. Among the water-soluble inorganic ion species, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the main components in $PM_{2.5}$, while $NO_3^-$ dominantly existed in both $PM_{10-2.5}$ and $PM_{over-10}$. Non-seasalt $SO_4^{2-}$ (nss-$SO_4^{2-}$ and $NO_3^-$ were found to mainly exist as the neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ in fine particles.

인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링 (Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제37권6_2호
    • /
    • pp.1881-1890
    • /
    • 2021
  • 미세먼지는 인체에는 물론 생태계, 날씨 등에도 많은 영향을 끼치며, 인구와 건물, 차량 등이 밀집된 대도시에서의 미세먼지의 예측과 모니터링은 중요하다. 특히 자동차, 연소 등에서 발생하는 PM2.5 농도는 독성 물질을 포함할 수 있어 체계적인 관리가 필요하다. 따라서 본 연구는 화학 인자, 위성 기반의 aerosol optical depth (AOD), 기상 인자 등을 입력 자료로 하여 수도권PM2.5 농도를 예측하고자 한다. PM2.5 농도 예측을 위해 기계 학습 모델 중 PM 농도 예측에 우수한 성능을 보이는 random forest (RF) 모델을 선정하였으며, 모델 평가를 위해 통계 지표인 R2, RMSE, MAE, MAPE를 산출하였다. RF 모델의 모델 정확도는 R2, RMSE, MAE, MAPE는 각각 0.97, 3.09, 2.18, 13.31로 나타났으며, 예측 정확도는 각각 0.82, 6.03, 4.36, 25.79로 본 연구에서 사용한 인자들을 이용하여 PM2.5를 예측 시 높은 정확도와 상관성을 나타내었다. 따라서 향후 학교 미세먼지 예측 및 범주화를 위해 본 연구에서 사용한 인자들을 RF 모델에 적용하였을 때 신뢰할만한 결과를 도출할 수 있을 것으로 기대된다.

서울시 초미세먼지(PM2.5) 지역별 극단치 분석 (Regional Analysis of Extreme Values by Particulate Matter(PM2.5) Concentration in Seoul, Korea)

  • 오장욱;임태진
    • 품질경영학회지
    • /
    • 제47권1호
    • /
    • pp.47-57
    • /
    • 2019
  • Purpose: This paper aims to investigate the concentration of fine particulate matter (PM2.5) in the Seoul area by predicting unhealthy days due to PM2.5 and comparing the regional differences. Methods: The extreme value theory is adopted to model and compare the PM2.5 concentration in each region, and each best model is selected through the goodness of fitness test. The maximum likelihood estimation technique is applied to estimate the parameters of each distribution, and the fitness of each model is measured by the mean absolute deviation. The selected model is used to estimate the number of unhealthy days (above $75{\mu}g/m^3$ PM2.5 concentrations) in each region, with which the actual number of unhealthy days are compared. In addition, the level of PM2.5 concentration in each region is analyzed by calculating the return levels for periods of 6 months, 1 year, 3 years, and 5 years. Results: The Mapo (MP) area revealed the most unhealthy days, followed by Gwanak (GW) and Yangcheon (YC). On the contrary, the number of unhealthy days was low in Seodaemun (SDM), Songpa (SP) and Gangbuk (GB) areas. The return level of PM2.5 was high in Gangnam (GN), Dongjak (DJ) and YC. It will be necessary to prepare for PM2.5 than other regions. On the contrary, Gangbuk (GB), Nowon (NW) and Seodaemun (SDM) showed relatively low return levels for PM2.5. However, in most of the regions of Seoul, PM25 is generated at a very poor level ($75{\mu}g/m^3$) every 6months period, and more than $100{\mu}g/m^3$ PM2.5 occur every 3 years period. Most areas in Seoul require more systematic management of PM2.5. Conclusion: In this paper, accurate prediction and analysis of high concentration of PM2.5 were attempted. The results of this research could provide the basis for the Seoul Metropolitan Government to establish policies for reducing PM2.5 and measuring its effects.

Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation

  • Won-Kyung Yang;Sung-Won Kim;Soo Hyun Youn;Sun Hee Hyun;Chang-Kyun Han;Yang-Chun Park;Young-Cheol Lee;Seung-Hyung Kim
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.81-88
    • /
    • 2023
  • Background: Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods: Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 ㎛) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results: KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.

부산시 항만 및 산단 인근 주거지역 대기질 모니터링과 분기별 특성확인 (Air Quality Monitoring in Residential Areas near Ports and Industrial Complexes in Busan)

  • 주현지;이승호;김민정;이가빈;홍영습
    • 한국환경보건학회지
    • /
    • 제50권3호
    • /
    • pp.181-190
    • /
    • 2024
  • Background: Air pollutants have been reported to have harmful effects on human health. Busan is a vulnerable area in terms of air quality due to the installation of various industrial complexes, particularly the port industry. However there is limited research data on the ambient air quality of residential areas near ports and industrial complexes. Objectives: This study aimed to determine the quarterly levels of air pollutants near industrial complexes and ports and to identify trends and characteristics of air pollutant exceedances. Methods: Air measurements were conducted quarterly. The measured air pollutants included O3, SO2, CO, NO2, PM10, and PM2.5. PM10 and PM2.5 were measured using BAM-1020 equipment, while O3, SO2, CO, and NO2 were measured using AP-370 Series equipment. The quarterly concentration levels of air pollutants were determined, and the influence of precipitation and commuting hours on fine particulate matter was examined. Analysis of variance (ANOVA) was conducted to determine if there was significance between the concentrations of fine particulate matter during commuting hours and non-commuting hours. Results: The concentrations of air pollutants were generally higher in the first and second quarters. Furthermore, the concentrations of PM10 and PM2.5 tended to decrease continuously following consecutive rainfall, with concentrations at the end of rainfall periods lower than those observed at the beginning. The frequency of exceeding average concentrations of PM10 and PM2.5 was higher on weekdays. Moreover, the average concentrations of PM10 and PM2.5 during weekday commuting hours were higher compared to non-commuting hours. Conclusions: The concentrations of air pollutants in the survey area were found to be higher than the overall average in Busan. Based on this study, continuous air quality monitoring is necessary for residential areas near industrial complexes and ports. For further research, health biomonitoring of residents in these areas should be conducted to assess their exposure levels.

공간 분석을 통한 부산광역시 대기오염물질의 분포와 이동오염원 간의 관련성 연구 (Analysis of the Association between Air Pollutant Distribution and Mobile Sources in Busan Using Spatial Analysis)

  • 민재희;김병권;주현지;김나영;황용식;이승호;홍영습
    • 한국환경보건학회지
    • /
    • 제50권3호
    • /
    • pp.191-200
    • /
    • 2024
  • Background: Busan is a rapidly industrializing city with many mixed residential and industrial areas. Fine dust emissions from mobile pollution sources such as ships and vehicles are particularly high in Busan. Objectives: This study analyzed the spatial distribution of air pollutants over the past three years and identified the impact of air pollutants through mobile source data in Busan. Methods: We obtained air pollutant data on fine particulate matter (PM10), ultrafine particulate matter (PM2.5), nitrogen dioxide (NO2), sulfurous acid gas (SO2), and ozone (O3) for the last three years (source: airkorea.or.kr) and analyzed the spatial distribution using SAS 9.4 and Surfer 23. For the mobile pollutant data, we used CCTV data from major intersections in Busan to identify truck and car traffic, and visualized traffic density with QGIS. Results: The analysis of the concentration of air pollutants over three years (2020~2022) showed that all were lower than the annual environmental standards with the exception of PM2.5. PM10 and PM2.5 were found to be highly concentrated in the western part of the area, while NO2 was high in the port area of Busan and SO2 was high in the western part of the area and near the new port of Busan. In the case of O3, it was high in the eastern part of the city. The traffic volume of freight vehicles by intersection was concentrated in the West Busan area, and the traffic volume for all cars was also confirmed to be concentrated at "Mandeok Intersection" located in the West Busan area. Conclusions: This study was conducted to determine the relationship between air pollutants emitted from motor vehicles and the distribution of air pollutants in Busan. The spatial distribution of PM10 and PM2.5 correlates with traffic volume, while high concentrations of SO2 and NO2 near the port are associated with ship emissions.

Mortality Burden Due to Short-term Exposure to Fine Particulate Matter in Korea

  • Jongmin Oh;Youn-Hee Lim;Changwoo Han;Dong-Wook Lee;Jisun Myung;Yun-Chul Hong;Soontae Kim;Hyun-Joo Bae
    • Journal of Preventive Medicine and Public Health
    • /
    • 제57권2호
    • /
    • pp.185-196
    • /
    • 2024
  • Objectives: Excess mortality associated with long-term exposure to fine particulate matter (PM2.5) has been documented. However, research on the disease burden following short-term exposure is scarce. We investigated the cause-specific mortality burden of short-term exposure to PM2.5 by considering the potential non-linear concentration-response relationship in Korea. Methods: Daily cause-specific mortality rates and PM2.5 exposure levels from 2010 to 2019 were collected for 8 Korean cities and 9 provinces. A generalized additive mixed model was employed to estimate the non-linear relationship between PM2.5 exposure and cause-specific mortality levels. We assumed no detrimental health effects of PM2.5 concentrations below 15 ㎍/m3. Overall deaths attributable to short-term PM2.5 exposure were estimated by summing the daily numbers of excess deaths associated with ambient PM2.5 exposure. Results: Of the 2 749 704 recorded deaths, 2 453 686 (89.2%) were non-accidental, 591 267 (21.5%) were cardiovascular, and 141 066 (5.1%) were respiratory in nature. A non-linear relationship was observed between all-cause mortality and exposure to PM2.5 at lag0, whereas linear associations were evident for cause-specific mortalities. Overall, 10 814 all-cause, 7855 non-accidental, 1642 cardiovascular, and 708 respiratory deaths were attributed to short-term exposure to PM2.5. The estimated number of all-cause excess deaths due to short-term PM2.5 exposure in 2019 was 1039 (95% confidence interval, 604 to 1472). Conclusions: Our findings indicate an association between short-term PM2.5 exposure and various mortality rates (all-cause, non-accidental, cardiovascular, and respiratory) in Korea over the period from 2010 to 2019. Consequently, action plans should be developed to reduce deaths attributable to short-term exposure to PM2.5.