Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.9
/
pp.532-540
/
2019
PET microfibers with various diameters (0.5, 0.2, 0.06, and 0.01 dpf) were dyed with a dispersed dye (C.I. Disperse Blue 56) at various temperatures. The dyeing process was conducted under infinite dyebath conditions at constant temperatures. The effects of the dyeing temperature and diameter on the partition coefficient, affinity, and diffusion coefficient of disperse dyes were studied. The curve of isotherms was fitted well to Nernst-type model in a large range of initial dye concentrations. At the same temperature, the partition coefficient and affinity decreased with increasing sample diameter due to the increase in surface area. At all deniers, the partition coefficient and affinity decreased with increasing temperature because the dyeing process is an exothermic reaction. In addition, the decrease in radius of the sample gives rise to a decrease in the heat of dyeing. The fine diameter of the sample resulted in an increased surface area but decreased space between the microfibers. Consequently, decreasing the diameter of the microfibers leads to a decrease in the diffusion coefficient. At the same diameter, the diffusion coefficient increased with increasing temperature because of rapid dye movement and the large free volume of the sample inside. In addition, thermal dependence of the diffusion coefficient increased when the diameter of the sample increased.
Proceedings of the Plant Resources Society of Korea Conference
/
2019.04a
/
pp.62-62
/
2019
Bacterial leaf blight(BLB), caused by X. oryzae pv. oryzae(Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a collection of 192 accessions was used in the genome-wide association study (GWAS) for BLB resistance loci against four Korean races of Xoo that were represented by the prevailing BLB isolates under Xoo differential system. A total of 192 accessions of rice germplasm were selected on the basis of the bioassay using four isolated races of Xoo such as K1 and K2. The selected accessions was used to prepare 384-plex genotyping by sequencing (GBS) libraries and Illumina HiSeq 2000 pairedend read was used for GBS sequencing. GWAS was conducted using TASSEL 5.0. The TASSEL program uses a mixed linear model (MLM). The results of the bioassay using a selected set of 192 accessions showed that a large number of accessions (93.75%) were resistant to K1 race and K2 resistant germplasm proportion remained between 66.67. The genotypic data produced SNP matrix for a total of 293,379 SNPs. After imputation the missing data was removed, which exhibited 34,724 SNPs for association analysis. GWAS results showed strong signals of association at a threshold of [-log10(P-value)] more than 5 (K1 and K2) for nine of the 39 SNPs, which are plausible candidate loci of resistance genes. These SNP loci were positioned on rice chromosome 2, 9, and 11 for K1 and K2 races. The significant loci detected have also been illustrated and make the CPAS markers for NBS-LRR type disease resistance protein, SNARE domain containing protein, Histone deacetylase 19, NADP-dependent oxidoreductase, and other expressed and unknown proteins. Our results provide a better understanding of the distribution of genetic variation of BLB resistance to Korean pathogen races and breeding of resistant rice.
The Korean art history academia has lately been carrying out active research on the Korean art market and art collectors. This area of research is significant in that it attempts to overcome the limitations of previous research trends focused on tracing back and analyzing preeminent masters, their schools and their influence, and approach new subject matters such as art and society, circulation and consumption of art works, which were unapproachable with previous research methods. This paper examines the life, artwork and art collection activities of Songeun(松隱) Yi Byeong-jik(李秉直: 1896-1973), an outstanding painter, calligrapher and art collector during the Japanese colonial period. The primary purpose of this paper is to advance the research project the author has recently initiated on modern Korean art collectors by reconstructing parts of this major art collector's individual lifestyle and to generally identify the art collection activities and the art works that he kept. Yi Byeong-jik, one of the preeminent art collectors during the colonial period, disposed his voluminous collection through two auctions in 1937 and 1941, and then held another auction two weeks before the onset of the Korean War on June 25, 1950 to sell off the remaining works. It seems that the reason why Yi had auctioned off his collections was for the purpose of investing in education. The tale that Yi safely kept 'Sam-guk-yu-sa(三國遺事),' which is considered a national treasure, even through the time of turbulence is evidence of his exemplary behavior as a model art collector. He may be one of the best examples of what an art collector should be in terms of giving back to the society and preserving things of beauty and value. However, one factor that limited and defined Yi's life was that he was a eunuch. This aspect of his life could be pointed out as the biggest factor that stopped him from becoming a mainstream participant in the art world despite his influence as a great painter, calligrapher, significant art collector, and discerning connoisseur.
Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
Korean Journal of Metals and Materials
/
v.49
no.8
/
pp.628-634
/
2011
SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.
KIPS Transactions on Software and Data Engineering
/
v.11
no.3
/
pp.133-140
/
2022
We investigate the performance of deep learning-based Korean language models on a task of predicting the score range of Korean essays written by foreign students. We construct a data set containing a total of 304 essays, which include essays discussing the criteria for choosing a job ('job'), conditions of a happy life ('happ'), relationship between money and happiness ('econ'), and definition of success ('succ'). These essays were labeled according to four letter grades (A, B, C, and D), and a total of eleven essay score range prediction experiments were conducted (i.e., five for predicting the score range of 'job' essays, five for predicting the score range of 'happiness' essays, and one for predicting the score range of mixed topic essays). Three deep learning-based Korean language models, KoBERT, KcBERT, and KR-BERT, were fine-tuned using various training data. Moreover, two traditional probabilistic machine learning classifiers, naive Bayes and logistic regression, were also evaluated. Experiment results show that deep learning-based Korean language models performed better than the two traditional classifiers, with KR-BERT performing the best with 55.83% overall average prediction accuracy. A close second was KcBERT (55.77%) followed by KoBERT (54.91%). The performances of naive Bayes and logistic regression classifiers were 52.52% and 50.28% respectively. Due to the scarcity of training data and the imbalance in class distribution, the overall prediction performance was not high for all classifiers. Moreover, the classifiers' vocabulary did not explicitly capture the error features that were helpful in correctly grading the Korean essay. By overcoming these two limitations, we expect the score range prediction performance to improve.
This study empirically analyzed a Korean pre-trained language models (PLMs) designed for natural language generation. The performance of two PLMs - BART and GPT - at the task of abstractive text summarization was compared. To investigate how performance depends on the characteristics of the inference data, ten different document types, containing six types of informational content and creation content, were considered. It was found that BART (which can both generate and understand natural language) performed better than GPT (which can only generate). Upon more detailed examination of the effect of inference data characteristics, the performance of GPT was found to be proportional to the length of the input text. However, even for the longest documents (with optimal GPT performance), BART still out-performed GPT, suggesting that the greatest influence on downstream performance is not the size of the training data or PLMs parameters but the structural suitability of the PLMs for the applied downstream task. The performance of different PLMs was also compared through analyzing parts of speech (POS) shares. BART's performance was inversely related to the proportion of prefixes, adjectives, adverbs and verbs but positively related to that of nouns. This result emphasizes the importance of taking the inference data's characteristics into account when fine-tuning a PLMs for its intended downstream task.
Recently, there has been a growing interest in zero-shot cross-lingual transfer, which leverages cross-lingual language models (CLLMs) to perform downstream tasks that are not trained in a specific language. In this paper, we point out the limitations of the data-centric aspect of quality estimation (QE), and perform zero-shot cross-lingual transfer even in environments where it is difficult to construct QE data. Few studies have dealt with zero-shots in QE, and after fine-tuning the English-German QE dataset, we perform zero-shot transfer leveraging CLLMs. We conduct comparative analysis between various CLLMs. We also perform zero-shot transfer on language pairs with different sized resources and analyze results based on the linguistic characteristics of each language. Experimental results showed the highest performance in multilingual BART and multillingual BERT, and we induced QE to be performed even when QE learning for a specific language pair was not performed at all.
The Gobiobotia naktongensis is a species endemic to Korea, and it has recently been designated as a class I endangered species of freshwater fish. Naeseong Stream, one of the tributaries of the Nakdong River, where the Gobiobotia naktongensis was first discovered, provided an optimal habitat for the Gobiobotia naktongensis in the past with fine sand beds and riffle. Currently, due to the construction of Yeongju Dam and the excessive dredging of river channels by the local government, the riverbed armoring in the downstream area of the dam is undergoing rapid changes, and as a result, the habitat environment of the Gobiobotia naktongensis is deteriorating. In this study, the variations of the habitat suitability of the Gobiobotia naktongensis due to the change in the riverbed grain size of the Naeseong Stream were analyzed based on the WUA (weight usable area) using the physical habitat model, River2D. The study domain is the reach from Seoktap Bridge to Hoeryong Bridge downstream of Yeongju Dam. The change in riverbed grain size was analyzed using D50 acquired in 2010 and 2020, respectively. The substrate grain size of Naeseong Stream in 2020 was thicker than that in 2010, and the riverbed coarsening phenomenon was evident overall. As a result of the River2D analysis, the area in which the Gobiobotia naktongensis could inhabit was only about 0.75% in 2010 compared to the entire area of the flow, and even this decreased to 0.55% in 2020 due to riverbed armoring.
Hyun-Jun, Kong;Jin-Yong, Yoo;Sang-Ho, Eom;Jun-Hyeok, Lee
Journal of Dental Rehabilitation and Applied Science
/
v.38
no.4
/
pp.196-203
/
2022
Purpose: This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types. Materials and Methods: A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured. Results: EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2. Conclusion: All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.
Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.