The relationship of information flow and market price formation are central to the basic tenets of financial economics. Whereas information is usually treated as being either public or private(monopolistic), most empirical studies focus on the price effects of public announcements. More recent research has centered more on the role of private information, such as insider trading, in efficient pricing and whether such trading increases investor welfare. Typically, 'insider trading' refers to an officer that trades in his/her company's shares. Insider trading, however, also refers to anyone who generates private, albeit costly, information concerning a stock's fundamental value. Normally, such insider activity is more difficult to ascertain. One way in which negative information is revealed is through short-selling activity, especially the monthly short-interest positions reported by the national stock exchanges. Diamond and Verrecchia(1987) provide a theoretical paradigm that predicts a negative price adjustment upon announcement of n company's monthly short interest, if the short interest displays an unusual increase and is correlated with negative information that is not yet public. Empirical studies of the short-run, negative price effect predicted by Diamond and Verrecchia find mixed results. One explanation is that the time period studied is too short for the market to absorb the informational content of these announcements. One reason is that these announcements are an ambiguous signal that requires more individuals and time to collect and act on the same information before full revelation occurs or before the implicit information becomes publicly known. This 'long delayed reaction' also serves as a motivation for related research on the wealth effect of mergers, share repurchases, and initial equity offerings in which long-run performance differs from the initial, short-run reaction to such announcements or offerings.
This study's aim was to explore the relationships among consumers' perceived risk, trust, and familiarity with products made in China. We invited 489 Korean adult consumers, who had purchased products made in China earlier, to take part in this investigation. Data analyses were conducted using a reliability test, confirmatory factor analysis, and structural equation modeling (SEM) with SPSS ver. 21.0 and AMOS ver. 21.0. We assumed that the perceived risk could be classified into four types: financial, performance, psychological, and social risk. The empirical verification through SEM indicated that all four types of the perceived risk represented a negative influence on the trust. Further, only the financial and psychological risks were significant when consumers were not familiar with products made in China (novice); in contrast, the experts (consumers familiar with products made in China) showed that the performance and social risks were effective. Finally, we found that there was a moderating effect of familiarity on the relationship between three types of perceived risk, namely financial, performance, and psychological risks, and trust, but the social risk was not affected. The results of this research should help us to understand the consumers' risk perception of imported goods and to formulate criteria on the basis of which the consumers evaluate these products. This research can help companies, particularly those in China, to formulate market strategies effectively when they enter a foreign market such as Korea by exploring the influence of the perceived risk on local consumers' purchasing behaviors as well.
Purpose - This study expands the corporate social responsibility (CSR) model and concepts by adding to it the concepts of corporate identity and public existence responsibility. Then, this study examines the structural relationship between corporate identity and public existence responsibility. This study contributes to expanding CSR to give customers a different perspective from previous studies in that it specifically measures corporate public existence responsibility, corporate identity, and corporate value creation and investigates the structural relationship. Research design, data, and methodology - This study addresses specific research questions. First, it asks whether non-financial performance is a component of CSR; second, it asks if the improvement in the corporate image should be treated as its corporate identity; and third, it tries to expand CSR concepts from corporate citizenship and public market awareness to public existence responsibility. The research hypothesis is formulated to confirm the relationships among CSR, corporate value creation, corporate identity, and public existence responsibility. Result - This study confirms that CSR has a positive correlation with corporate value creation and that CSR has a relatively positive correlation with corporate identity and public existence responsibility. Additionally, it confirms a positive correlation between corporate identity and public existence responsibility. However, corporate identity and public existence responsibility do not have an effect on corporate value creation. However, the influence of public existence responsibility confirmed the influence of corporate value creation through corporate identity as a mediating variable. Conclusion - This study argues that CSR produces more general performance including both financial and non-financial performance. It also confirms that the goals and performance of CSR can substitute for corporate value creation from general performance. It further confirms that public existence responsibility includes market public awareness, corporate images, and corporate associations. It suggests that corporations should see themselves as having public existence responsibility. Further, they should devise strategies to build corporate identities that associate with corporate goals and visions. Finally, this study contributes to the expansion of perspectives on CSR theoretical concepts and goals of performance of the corporation throughout the corporate value creation process.
The Journal of Asian Finance, Economics and Business
/
v.4
no.3
/
pp.5-17
/
2017
This study extends research into whether disclosure of corporate and financial information is associated with firms' costs of equity capital. This study sets out to examine empirically the determinants of corporate disclosure in the annual reports of 37 largest and most liquid firms listed on Kazakhstan Stock Exchange (KASE) in Kazakhstan. It also reports the results of the association between company-specific characteristics and disclosure of the sample companies. Based on the analysis of existing empirical research, the disclosure index has been constructed and regression analysis of the influence of the disclosure index on the cost of equity capital has been conducted. The obtained results show that the received findings correlate with foreign empirical studies, and the disclosure index in this sample has a negative impact on the cost of equity capital. Using cost of equity capital estimates derived from capital asset pricing model, we find that firms with higher levels of financial transparency are associated with significantly lower costs of equity capital. Economic theory assumes that by increasing the level of corporate reporting, firms not only increase their stock market liquidity, but also decrease the investors' estimation risk, arising from uncertainty about future returns and payout distributions. The results show that firms on the Kazakhstan market can reduce their cost of equity capital by increasing the level of their voluntary corporate disclosures.
Purpose - This study aims in analyzing the dynamic relationship between household loans and housing prices according to the characteristics of depository institutions after the financial crisis, identifying the recent trends between them, and making policy suggestions for stabilizing house prices. Design/methodology/approach - The monthly data used in this study are household loans, household loan interest rates, and housing prices ranging from January 2012 to May 2020, and came from ECOS of the Bank of Korea and Liiv-on of Kookmin Bank. This study used vector auto-regression, generalized impulse response function, and forecast error variance decomposition with the data so as to yield analysis results. Findings - The analysis of this study no more shows that the household loan interest rates in both deposit banks and non-bank deposit institutions had statistically significant effects on housing prices. Also, unlike the previous studies, there was statistically significant bi-directional causality between housing prices and household loans in neither deposit banks nor non-bank deposit institutions. Rather, it was found that there is a unidirectional causality from housing prices to household loans in deposit banks, which is considered that housing prices have one-sided effects on household loans due to the overheated housing market after the financial crisis. Research implications or Originality - As a result, Korea's housing market is closely related to deposit banks, and housing prices are acting as more dominant information variables than interest rates or loans under the long-term low interest rate trend. Therefore, in order to stabilize housing prices, the housing supply must be continuously made so that everyone can enjoy housing services equally. In addition, the expansion and reinforcement of the social security net should be realized systematically so as to stop households from being troubled with the housing price decline.
International journal of advanced smart convergence
/
v.10
no.1
/
pp.1-11
/
2021
Document page segmentation is an important step in building a quality optical character recognition module. The study examined already existing work on the topic of page segmentation and focused on the development of a segmentation model that has greater functional significance for application in an organization, as well as broad capabilities for managing the quality of the model. The main problems of document segmentation were highlighted, which include a complex background of intersecting objects. As classes for detection, not only classic text, table and figure were selected, but also additional types, such as signature, logo and table without borders (or with partially missing borders). This made it possible to pose a non-trivial task of detecting non-standard document elements. The authors compared existing neural network architectures for object detection based on published research data. The most suitable architecture was RetinaNet. To ensure the possibility of quality control of the model, a method based on neural network modeling using the RetinaNet architecture is proposed. During the study, several models were built, the quality of which was assessed on the test sample using the Mean average Precision metric. The best result among the constructed algorithms was shown by a model that includes four neural networks: the focus of the first neural network on detecting tables and tables without borders, the second - seals and signatures, the third - pictures and logos, and the fourth - text. As a result of the analysis, it was revealed that the approach based on four neural networks showed the best results in accordance with the objectives of the study on the test sample in the context of most classes of detection. The method proposed in the article can be used to recognize other objects. A promising direction in which the analysis can be continued is the segmentation of tables; the areas of the table that differ in function will act as classes: heading, cell with a name, cell with data, empty cell.
ESG Investment is emerging as a trend and common sense in the financial market. ESG Investment is an investment method that simultaneously pursue social sustainability and investment returns from a long-term perspective by reflecting non-financial factors such as environment, society and governance in addition to corporate financial performance in investment decisions. This study checked how the characteristics of ESG investment have been changed after Covid-19. Afterwards, it was confirmed that Covid-19 actually acted as a negative factor in the securities market by applying VAR model. At the same time, it was demonstrated that ESG indices of the US and Korea outperformed their benchmark in terms of return and risk during the pandemic regime. The result of this study hints that the importance of ESG investment will be unchanged after Covid-19. At the same time, it suggests that managers should avoid passive ESG management and engage in strategic ESG management based on knowledge management.
Journal of the Economic Geographical Society of Korea
/
v.8
no.2
/
pp.247-266
/
2005
The purpose of this paper is to analyse the effects of a firm's financial and non-financial factors on the relationship formation with its main bank in the industry of parts and material in Pusan-Kyungnam region. The results, out of accordance with the relation-banking or regional financial market perspective, do not support the hypothesis that regional financial institutions would be useful for decreasing the financial difficulties of the small and medium firms in the region. The analyses about the effects of non-financial factors on the formation of main bank relations show that while Kookmin Bank and Industrial Bank play important roles as main banks of small businesses other national banks put emphasis on the transaction lending. And the analyses about the effects of financial factors show that firms having main bank relations with non-bank financial institutions and Kookmin bank are more profitable and stable than firms having main bank relations with other banks including local banks. On the whole it seems that local banks are not making a commitment to the regional economy and their operational grounds are not strong enough.
Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.
This paper empirically examines the effects of green technology patent on the financial performance of SMEs and venture specialized green enterprises. In particular, this paper is focused on analysing the financial performance difference by comparing the financial condition of 1st year before and 1st year after the application of green technology patent, and the one of 1st year before and 2nd year after it using sales, operating profit, net income, ratio of operating profit to net sales, and ratio of net profit to net sales. The statistical significances were accepted on sales after 1st and 2nd year, operating profit and ratio of net profit to net sales after 1st year, and ratio of operating profit to net sales after 2nd year. This paper proposes the vitalization of green consumption market, the reinforcement of green financial policy, the installation of financing windows, the improvement of unfair business conducts of large enterprises, and the reinforcement of win-win partnership between large enterpsises and SMEs as policy issues of Korean government in order to promote SMEs and venture specialized green enterprises.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.