The Journal of Asian Finance, Economics and Business
/
v.9
no.4
/
pp.1-12
/
2022
Our study adds to the body of knowledge about the relationship between credit ratings and the capital structure of bond issuers. Using Bloomberg and Datastream databases and employing panel regression models, we study the capital structure changes of Japanese enterprises after credit rating changes by global rating agencies (S&P and Moody's) as well as their local counterparts (R&I and JCR) from 1998 to 2016. We find that after rating downgrades, Japanese enterprises considerably reduce net debt or net debt relative to net equity, similar to the findings of Kisgen (2009), who focused on U.S. industrial firms. They do not, however, make adjustments to their financial structure as a result of rating improvements. In comparison to downgrades by S&P and Moody's, Japanese corporations issue 1.89 percent less net debt and 1.50 percent less net debt relative to net equity after R&I and JCR rating downgrades. To put it another way, Japanese companies consider rating adjustments made by local agencies to be more significant than those made by global rating organizations. Our findings contradict earlier research that suggests S&P and Moody's are more prominent in the investment community than R&I and JCR in Japan.
In this paper, a Diffusion Multi-step Classifier (DMC) is proposed to address the imbalance issue in credit prediction. DMC utilizes a Diffusion Model to generate continuous numerical data from credit prediction data and creates categorical data through a Multi-step Classifier. Compared to other algorithms generating synthetic data, DMC produces data with a distribution more similar to real data. Using DMC, data that closely resemble actual data can be generated, outperforming other algorithms for data generation. When experiments were conducted using the generated data, the probability of predicting delinquencies increased by over 20%, and overall predictive accuracy improved by approximately 4%. These research findings are anticipated to significantly contribute to reducing delinquency rates and increasing profits when applied in actual financial institutions.
Journal of the Korea Society of Computer and Information
/
v.28
no.8
/
pp.21-30
/
2023
The study proposes a model that utilizes Python-based deep learning text classification techniques to detect the legality of illegal financial advertising posts on the internet. These posts aim to promote unlawful financial activities, including the trading of bank accounts, credit card fraud, cashing out through mobile payments, and the sale of personal credit information. Despite the efforts of financial regulatory authorities, the prevalence of illegal financial activities persists. By applying this proposed model, the intention is to aid in identifying and detecting illicit content in internet-based illegal financial advertisining, thus contributing to the ongoing efforts to combat such activities. The study utilizes convolutional neural networks(CNN) and recurrent neural networks(RNN, LSTM, GRU), which are commonly used text classification techniques. The raw data for the model is based on manually confirmed regulatory judgments. By adjusting the hyperparameters of the Korean natural language processing and deep learning models, the study has achieved an optimized model with the best performance. This research holds significant meaning as it presents a deep learning model for discerning internet illegal financial advertising, which has not been previously explored. Additionally, with an accuracy range of 91.3% to 93.4% in a deep learning model, there is a hopeful anticipation for the practical application of this model in the task of detecting illicit financial advertisements, ultimately contributing to the eradication of such unlawful financial advertisements.
The purpose of this research was to investigate the perception of financial risks and expenditures for insurance by household characteristics. Data were collected from 598 housewives by online survey on Dec., 2001. Results indicated that respondents had perceived the risk of unemployment most among three types of risks. Household characteristics reflecting financial needs in emergency case had positive effects on the perception of risks, and hence the expenditures for insurance, in general. On the other hand, the level of emergency preparation had negative effects on the perception of risks and the expenditures for insurance. However, only credit-related risk had a positive relationship with the expenditures for insurance.
Fisheries finance is divided into the policy time of long period of time and low interest and the special financing institutions, such as Fisheries Co-operatives. Union system finance is the system finance, which supports the fisheries system organization. Fisheries Co-operatives in cities, towns and villages are the independent management objects. Prefecture federation of Fisheries Co-operative is in prefecture stage. Norm Chukin Bank is in national stage. Each shares functions in these three stages, and finance is performed systematically, Fisheries policy finance comprises government financial institution capital such as the Agriculture, Forestry and Fishery Finance Corporation whish is based on the capital of a country or a prefecture financial fund, and fishery Modernization Capital used as financial funds through the government. Moreover, to complement such finance institutionally, Fisheries Credit Foundations, Agriculture and Fisheries Saving Insurance Corporation and National fisheries Co-operative Trust Enterprise Mutual Aid system have been established
Journal of Institute of Control, Robotics and Systems
/
v.20
no.10
/
pp.995-1001
/
2014
In the aftermath of the financial crisis of 2008, while numerous members of the general public lost their homes and jobs, many of the largest banks held responsible for the crisis have been successfully rescued by bailouts. In this paper, through the analysis of income inequality, unemployment, tax cuts, and bailouts, we show that the interests of the general public are different from the interests of politicians and bankers. While the small elite group of politicians and bankers could set the deregulation policies with inordinate power based on full information, most people were ignorant and unconcerned about the policies, and hence did not oppose them. Specifically, we model the credit change in the financial markets of the United States by a finite state machine, and design three local supervisors representing three groups with different interests. It is then shown that the deregulation policies were adopted according to the difference of the supervisors' powers.
The financial MyData service has implemented in January 2022 and launched 45 services by banks, securities, credit cards and fintech companies. This study applied the Q methodology, to identify the user types of MyData services and compared the perceptions of employees of financial institutions who plan and develop the MyData services. There are three types of MyData service users: active users, limited users who focus on consumption and asset status inquiry, and sensitive users for personal information. There were two types of recognition of financial company employees. One is the active user support other is the sensitive user for personal information support. The analysis of subjective perceptions can be used as a reference for establishing a company's MyData service marketing strategy and establishing related policies to improve the MyData ecosystem.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.12
no.1
/
pp.133-144
/
2017
This study investigates firm-specific financial variables that determine investment or speculative grades from the viewpoint of firms, which are one of the major stakeholders related to the credit rating. We employ an ordered probit model for our analysis with the sample data from 1999 to 2015 for listed firms in the Korean stock markets. For investment grades, operating margin, sales, market-to-book, dividend payment, capital expenditure ratio, and tangible asset ratio have a significantly positive impact on credit ratings. In the subsample for speculative grades, the coefficients of the dividend payment, retained earnings ratio, and capital expenditure ratio are significantly positive while short-term debt ratio and R&D expenditures have a significantly negative impact on credit ratings. For the analysis before and after 2009, when the Credit Information Use and Protection Act was strengthened after the global financial crisis, the coefficients of the capital expenditure ratio, cash ratio, and tangible asset ratio are significantly positive in the subsample for investment grades before 2009, but not significant after 2010. The coefficient of the long-term debt ratio is more significantly negative than that of the short-term debt ratio before 2009, for speculative grades, but short-term debt ratio has a more negative effect on ratings than long-term debt ratio after 2010. Surprisingly, the coefficient of the R&D expenditures is significantly negative in both investment and speculative grades since 2010. Our findings are inconsistent with the conjecture that the increase in R&D expenditures enhances the possibility of creating cash-flow by raising the investment growth opportunity, and thus affects positively the credit rating.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.13
no.3
/
pp.125-140
/
2018
According to statistics, it is shown that domestic SMEs rely on bank loans for the majority of fund procurement. From financial information shortage (Thin file) that does not provide information necessary for credit evaluation from banks such as financial statements. In order to overcome these problems, recently, in alternative finance such as P2P, using differentiated information such as demographics, trading information and the like utilizing Fintech instead of existing financial information, small funds A new credit evaluation method has been expanding to provide SMEs with small amounts of money. In this paradigm of environmental change, in this research, credit evaluation which can expand fund supply to SMEs by utilizing big data based on trade area information such as sales fluctuation, location conditions etc. In this research, we try to find such a solution. By analyzing empirically the big data generated in the trade area, we verify the effectiveness as a credit evaluation factor and try to derive the main parameters necessary for the business performance evaluation of the founder of SMEs. In this research, for 17,116 material businesses in Seoul City that operate the service industry from 2009 to February 2018, we collect trade area information generated for each business location from Big Data specialized company NICE Zini Data Co., Ltd.. We collected and analyzed the data on the locations and commercial areas of the facilities that were difficult to obtain from SMEs and analyzed the data that affected the Corporate financial Distress. It is possible to refer to the variable of the existing unused big data and to confirm the possibility of utilizing it for efficient financial support for SMEs, This is to ensure that commercial lenders, even in general commercial banks, are made to be more prominent in one sector of the financing of SMEs. In this research, it is not the traditional financial information about raising fund of SMEs who have basically the problem of information asymmetry, but a trade area analysis variable is derived, and this variable is evaluated by credit evaluation There is differentiation of research in that it verified through analysis of big data from Trading-area whether or not there is an effect on.
Jeong, Seong Hoon;Kim, Hana;Shin, Youngsang;Lee, Taejin;Kim, Huy Kang
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.6
/
pp.1525-1540
/
2015
Due to a rapid advancement in the electronic commerce technology, the payment method varies from cash to electronic settlement such as credit card, mobile payment and mobile application card. Therefore, financial fraud is increasing notably for a purpose of personal gain. In response, financial companies are building the FDS (Fraud Detection System) to protect consumers from fraudulent transactions. The one of the goals of FDS is identifying the fraudulent transaction with high accuracy by analyzing transaction data and personal information in real-time. Data mining techniques are providing great aid in financial accounting fraud detection, so it have been applied most extensively to provide primary solutions to the problems. In this paper, we try to provide an overview of the research on data mining based fraud detection. Also, we classify researches under few criteria such as data set, data mining algorithm and viewpoint of research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.