Mohammed Ali Mohamed Ahmed, ALI;Ahmed Saied Rahama, ABDALLAH;SalimAhmed Mohamed, AlSHEHRI
The Journal of Asian Finance, Economics and Business
/
v.10
no.2
/
pp.301-311
/
2023
This research aims to identify the role that small and medium enterprises (SMEs) can play in achieving the economic goals of the vision of Saudi Arabia 2030. The study relied on descriptive analysis, designing a standard model, and analyzing it using the Eviews9 program. The study also adopted the questionnaire as a tool for data collection. The study area covered Alkharj and Hawtat Bani Tamim governorates. The sample size of the study was 142 participants. The study's results confirmed the existence of a significant impact of changes in independent variables (X1, X2, X3, X4), which are (GDP, non-oil exports, number of employees, and public revenues), respectively. The dependent variable (Y) represents the number of small and medium-sized businesses in the Kingdom of Saudi Arabia. Additionally, it was found that 61.3% of small and medium-sized enterprises in the governorates of Al-Kharj and Hawtat Bani Tamim operate in the commercial sector. Most study participants concur that SMEs significantly lowered the unemployment rate and helped boost the GDP rate in the Kingdom of Saudi Arabia. The obstacles and difficulties facing the establishment of these enterprises were financial problems, marketing problems, and corporate monopoly. Furthermore, most of the small and medium l enterprises faced financing problems.
Lee, Seon Min;Chun, Seungwoo;Joo, Young Hyuck;Yoo, Changjo
Asia Marketing Journal
/
v.15
no.4
/
pp.223-241
/
2014
In May 2012, the collaboration of Hana Bank, top financial service company, and SK Planet, top telecommunication service provider, introduced a new credit card that was filled with all-in-one benefits into the market. Leveraging strong infrastructure of two companies, each top in its own industries, the awareness and preference of 'Club SK Card' brand rapidly increased to about 25% in less than one year. Moreover, this new card was enthroned in the most sold credit card of year 2012, accounting for a market share of 7.2% in the credit card market and more than 80% in the mobile credit card market. To make these results possible, 'Club SK Card' marketing team developed an effective marketing communication strategy which followed the 6M model. The mission of the marketing communication strategy was simple and clear. It was to deliver the card's inherent strengths on consumer benefits that come from the support of subsidiary and affiliated companies of SK Planet. According to OK Cashbag data, the marketing communication team selected the appropriate target consumers and approached them directly, inducing actual purchase behavior. The target consumers received straightforward messages about 'Club SK Card' and were led to join in the new membership at their most frequently visited supermarket or franchise restaurant. The straightforward communication message embedded in an eye-catching commercial ad with a hook song accompanied with a dance was delivered via public media. The ad became so popular that many other television programs quoted or made parodies of the ad. Courtesy of the commercial ad, the brand name disseminated rapidly and widely among the public. In October 2012, an ingenious planning and persistent implementation of the communication strategy results 'Club SK Card' to be ranked top in brand awareness as well as advertising preference tests.
Kim, Eun-Sub;Kim, Hoseok;Lee, Dong-Kun;Choi, Yun-Yeong;Kim, Da-Seul
Journal of the Korean Society of Environmental Restoration Technology
/
v.27
no.1
/
pp.55-70
/
2024
The loss of biodiversity poses a significant threat not only to business sustainability and investment risk but also to societal well-being. Nature serves as a crucial driver for long-term business viability and economic prosperity. The Task Force on Nature-related Financial Disclosures (TNFD), established in September 2023, mandates that companies assess and disclose their impacts on nature. Despite this, many businesses lack a full understanding of their reliance on and impact upon natural capital and ecosystem services, leading to insufficient disclosures. This study evaluates the applicability of TNFD's assessment methodologies and indicators within a domestic context, highlighting the condition of nature and ecosystem services, and exploring potential synergies with national biodiversity policies. Our analysis suggests that TNFD necessitates a unique approach to the spatial and temporal data and methodologies traditionally employed in environmental impact assessments. This includes assessing the reciprocal influences of corporate activities on natural capital and ecosystem services via the LEAP framework. Moreover, in industries where the choice of specific indicators depends on unique sectoral traits, developing a standardized strategy for data and assessment indicators-adapted to local conditions-is crucial due to the variability in the availability of assessment tools and data. The proactive engagement of the private sector in ecosystem restoration projects is particularly promising for contributing towards national biodiversity objectives. Although TNFD is in its nascent phase, its global adoption by numerous companies signifies its potential impact. Successful implementation of TNFD is anticipated to deepen businesses' and financial institutions' understanding of natural capital and ecosystem services, thereby reinforcing their commitment to sustainable development.
There have been arguments in Korea that fair value accounting system improves quality of accounting information through the asset revaluation. These arguments are based on the fact that investors prefer fair value to cost value information. Others argue that cost principles may offer more proper information to the investors because financial statements applied the cost principles are more objective and thus more reliable. Prior researches focused mainly on the motives of asset revaluation but I examined the effects of the tangible asset revaluation on the stock prices. The empirical findings indicate that : (1) the gains on the tangible asset revaluation are positively correlated with the stock prices; (2) the net book values applied the cost principles explain stock prices better than the net book values applied fair values. My findings suggest that the gains on the tangible asset revaluation constitute a part of the firms' values but the accounting informations measured fair value are not always useful to the investors in the capital market.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.5
/
pp.543-548
/
2017
This paper examines the effects of strong corporate governance for listed companies in accessing capital markets from the point of view of the weighted average cost of capital. Results found that corporate governance had a significant negative(-) relation to the weighted average cost of capital. This finding is consistent with previous research and implies that the higher shareholder ownership and foreign ownership have confidence in the financial information of the company, and therefore, risk is reduced for investors. This results in lower expected rates of return and companies will pay a lower cost of capital. Second, tax evasion had a positive effect(+) on the weighted average cost of capital. The low quality of corporate accounting information is expected to increase tax avoidance. Accordingly, this results in increased risk. If the required rate of return is high in its impact,it leads to increased capital costs. In addition, corporate governance and tax avoidance factors showed a negative affect (-) on the weighted average cost of capital. Corporate governance plays an important role in tax avoidance and the weighted average cost of capital, and strong corporate governance reducesthe impact on tax avoidance. In addition, the weighted average cost of capital in capital markets showed the reducing effect.
The purpose of this study is to examine the current status and components of Korean National Debt and to analyze the effects of each component on National Debt. In the Korean Statistical Information Service (KOSIS), we searched for data such as General Accounting Deficit Conservation, For Foreign Exchange Market Stabilization, For Common Housing Stability, Local Government Net Debt Public Funds, etc that constitute National Debt. The analysis period used a total of 23 annual data from 1997 to 2019. The data collected in this study use the rate of change compared to the previous year for each component. Using this, this study attempted index analysis, numerical analysis, and model analysis. Correlation analysis result, the National Debt has a high relationship with the For Common Housing Stability. For Foreign Exchange Market Stabilization, Public Funds, etc., but has a low relationship with the Local Government Net Debt. Since 1997, National Debt has been increasing similarly to the For Foreign Exchange Market Stabilization, For Common Housing Stability and Public Funds etc. Since 2020, Korea is expected to increase significantly in terms of For Common Housing Stability and Public Funds, etc due to Corona19. At a time when the global economic situation is difficult, Korea's National Debt is expected to increase significantly due to the use of national disaster subsidies. However, if possible, the government expects to operate efficiently for economic growth and financial market stability.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.2
/
pp.602-609
/
2021
Under accrual basic accounting, financial statements may be less reliable compared to cash basis accounting. The purpose of this study is to conduct an empirical analysis to determine the possibility of profit adjustment through the increase and decrease of deferred tax accounts. For our empirical analysis, a dummy variable of '1' was used as a dependent variable when the deferred tax net assets increased from the previous year and '0' when the deferred tax net assets decreased. Meanwhile, the variables of interest were discretionary accruals and ROA variation compared to the previous year. Logistic regression analysis was performed to establish the relevance between variables. Results found larger discretionary accruals related to lower net deferred tax assets compared to the previous year. In addition, there was a correlation between ROA and net deferred tax assets only if the ROA increased and net profit was greater than '0'. Study results will enable deferred tax information to be used in investment decision-making, and supervisory institutions can establish policies to prevent profit adjustments and enhance reporting standards.
Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.
The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.
The Journal of Asian Finance, Economics and Business
/
v.7
no.12
/
pp.1175-1184
/
2020
This research examines the personal (i.e., Machiavellianism) and situational factors (i.e., tax climate) that are believed to be psychologically salient aspects in tax compliance. To the best of our knowledge, no research has been carried out to investigate the interaction effect of the two factors. This study uses a paper-and-pencil laboratory experiment 2x2 between-subject factorial design that involved 158 participants. The results indicate that a taxpayer who has a low Machiavellianism score or who is in a high synergistic tax climate reports a higher level of income. In the high synergistic tax climate, where tax norms apply, personal ethics do not play a significant role in tax compliance decisions. Where the synergistic relationship between taxpayer and authorities is low, personal ethics play an important role, i.e., low Machiavellians report a higher reported income than high Machiavellians do. This research contributes to the literature that deviates from the traditional model of tax compliance. Taxpayers are not always rational, but they might pay tax for reasons other than financial motives (Alm, 1991, 2018), that is, personal ethics in this study. This research implies the need for policymakers to consider other approaches rather than only relying on audits and fines.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.