• Title/Summary/Keyword: Final Disposal

Search Result 141, Processing Time 0.023 seconds

Disposal Approach for Long-lived Low and Intermediate-Level Radioactive Waste (장반감기 중저준위 방사성 폐기물의 국외 처분동향과 처분방안)

  • Park, Jin-Beak;Park, Joo-Wan;Kim, Chang-Lak
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.143-152
    • /
    • 2005
  • There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste.

  • PDF

A Review on Development of Nationwide Map of Scientific Features for Geological Disposal in Japan (일본의 과학적 특성 지도 개발에 대한 고찰)

  • Lee, Jeong-Hwan;Lee, Sang-Jin;Kim, Hyeongjin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • Japan enacted the "Designated Radioactive Waste Final Disposal Act" for the geological disposal of high-level radioactive waste in 2000 and began the site selection process. However, no local government wanted to participate in the siting process. Therefore, in 2015, the Japanese government developed a new site selection process during the literature survey step, and on June 28, 2017 they published a "Nationwide Map of Scientific Features for Geological Disposal" created with the aim of promoting public participation from local governments. This map illustrated the requirements and criteria to be considered in the early or conceptual stages of securing a geological repository and was useful for improving public understanding and exchanging opinions with local governments by analyzing the suitability of different geological disposal sites.

Rock Mechanical Aspects in Site Characterization for HLW Geological Disposal: Current Status and Case Studies (고준위방사성폐기물 심층처분 부지조사를 위한 암반공학적 요소: 국내외 현황 및 사례 조사)

  • Choi, Seungbeom;Kihm, You Hong;Kim, Eungyeong;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.136-148
    • /
    • 2020
  • Nuclear power plants have been operated in Korea since 1978, thus the high-level radioactive waste (HLW) produced from the plants has been accumulated accordingly. Hence, it is urgent to secure a final repository for HLW disposal, however, siting process should be preceded, which usually takes long time, as it requires broad and precise investigation. The investigation is generally carried out in stages, which consists of multidisciplinary approaches. In this study, the case studies mainly pertaining to rock mechanics were conducted. Rock mechanical aspects required in each stage and their applications were investigated and corresponding R&D researches were presented as well. At the same time, current research status in Korea was presented, followed by a brief future research plan with regard to the site investigation. The future research aims to produce fundamental information for siting process, and the compiled cases in this study will be utilized as references in the research.

A Study of the Decommissioning Cost Estimation for Nuclear Facilities (원자력 시설 해체비용 산정에 관한 고찰)

  • 이동규;정관성;이근우;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.85-96
    • /
    • 2004
  • This paper is to study on the decommissioning cost estimation for nuclear facilities of advanced nuclear organizations and countries for deriving the cost factors to be taken considerations into accomplishing decommissioning projects. Of cost categories producing the factors of decommissioning costs, dismantling and waste processing & disposals activities are examined to increase the its costs. Of labor, materials and other costs categories, labor costs are summarized to have overall majorities in the decommissioning cost factors. The main parameters of all factors affecting the decommissioning costs are analyzed as work difficulty, regional labor costs, peripheral cost, disposal cost and final burial costs.

  • PDF

Characteristics of Household Wastes from Fishing Village in Small Island (소규모 도서지역 어촌의 생활계 쓰레기 발생특성에 관한 연구)

  • Jeong, Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.181-186
    • /
    • 2010
  • Characteristics of household wastes production from fishing village in small island was investigated. Investigation was conducted in August and December to represent seasonal characteristics of summer and winter, respectively. Amount of household wastes production was 0.65 kg/capita·day and this is relatively low value compared with nationwide average. Food wastes, papers, vinyl and plastics are major part of combustible portion in household wastes. Composting is inappropriate method as a final disposal method in terms of C/N ratio calculated from elemental analysis. It is recommended that incineration can be appropriate way as a final disposal method of household wastes because low heating value of household wastes is equivalent to that of crude oil. The fraction of food wastes in household is considerably higher than the values obtained from other residential areas in nationwide. Thus, it is evaluated that household composting devices and vermicomposting facilities are necessary to reduce the amount of food wastes. It also can be evaluated that incineration is optimal method as disposal method of household wastes from fishing village except food wastes.

On the Generation and Processing of the Sludge Containing Heavy Metals in Korea (우리나라 重金屬 함유 汚泥의 發生과 處理)

  • On, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.3-16
    • /
    • 2004
  • There are over 190,000 tons per year of the sludge containing heavy metals (SHM) generated from industries in Korea. The SHM is so hazardous waste, it needs proper intermediate treatment before final disposal. At present, the common intermediate treatment and final disposal technologies of SHM are solidification and landfill. However, the future treatment and disposal technologies of SHM will be carry out to fulfill in both the environmental aspect and resource recycling. Thus, how to reduce the generation of SHM and recycle the valuable metal from SHM become the major subjects in the global world. In this article, in order to prospect the effective processing of SHM, the generation and processing of the sludge from plating wastewater, the research and development of valuable metal recycling technology and problems were summarized.

Treatment, Disposal and Beneficial Use Option for Sewage Sludge (하수슬러지 처리기술 동향 및 최적화 처리방안)

  • Choe, Yong-Su
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF

Development of User-friendly Modeling Interface for Process-based Total System Performance Assessment Framework (APro) for Geological Disposal System of High-level Radioactive Waste (고준위폐기물 심층처분시스템에 대한 프로세스 기반 종합성능평가 체계(APro)의 사용자 친화적 모델링 인터페이스 개발)

  • Kim, Jung-Woo;Lee, Jaewon;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.227-234
    • /
    • 2019
  • A user-friendly modeling interface is developed for a process-based total system performance assessment framework (APro) specialized for a generic geological disposal system for high-level radioactive waste. The APro modeling interface is constructed using MATLAB, and the operator splitting scheme is used to combine COMSOL for simulation of multiphysics and PHREEQC for the calculation of geochemical reactions. As APro limits the modeling domain to the generic disposal system, the degree of freedom of the model is low. In contrast, the user-friendliness of the model is improved. Thermal, hydraulic, mechanical and chemical processes considered in the disposal system are modularized, and users can select one of multiple modules: "Default process" and multi "Alternative process". APro mainly consists of an input data part and calculation execution part. The input data are prepared in a single EXCEL file with a given format, and the calculation part is coded using MATLAB. The final results of the calculation are created as an independent COMSOL file for further analysis.

Current treatment and disposal practices for medical wastes in Bujumbura, Burundi

  • Niyongabo, Edouard;Jang, Yong-Chul;Kang, Daeseok;Sung, Kijune
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • Since improper management practices of solid medical waste (SMW) could potentially result in serious health risks and environmental problems, it is very important to properly treat and dispose of the medical wastes. In this study, current practices of SMW management from storage to final disposal stage in 12 health care facilities (HCFs) of Burundi were investigated using the official government reports. The results showed that 75% and 92% of HCFs used uncovered wheelbarrows and trucks for on-site or off-site SMW transportation, respectively, indicating that most transportation equipment and waste workers are not safely protected. The results also showed that 92.8% of SMW (15,736.4 ton) from all 12 HCFs were inappropriately disposed of through uncontrolled land disposal and incineration. If pharmaceutical wastes and discarded medical plastics (29.5% of SMW) can be separated and treated properly, the treatment costs can be reduced and resource savings can be achieved. Raising awareness of healthcare workers and general public about potential health effects arising from improper SMW management, sufficient financial and human resources for the treatment facilities (especially incinerators), and effective regulations and guidelines for transportation and treatment of SWM are some of the major tasks for safe and sustainable medical waste management in Burundi.

Landfill of Hazardous Wastes in Korea (국내 특정폐기물의 매립현황)

  • Lee, Dong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.213-223
    • /
    • 1992
  • Although landfill has been heavily relied upon as a final hazardous waste disposal method in Korea, the legal and technical problems associated with the landfill severely hinder proper disposal of hazardous wastes. The single largest legal problem is simply that, in spite of the recent amendments, the law regulating the hazardous waste landfill is yet in its primitive stage that even the lawful landfill sites cannot be regarded safe. The technical problems include improper selection of landfill sites, poor design and construction of landfill facilities, and lack of QA/AC and post-closure cares. These technical problems stem from inexperience and lack of resources. For the reduction of the potential danger from the improper landfills of hazardous wastes, it is an immediate need to further refine the law and to resolve the technical problems.

  • PDF