• Title/Summary/Keyword: Fin-tube Heat Exchanger

Search Result 267, Processing Time 0.03 seconds

Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions (FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성)

  • Jeong, Chul-Ki;Kim, Yong-Chan;Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

Optimization of Frosting Performance of a Fin-Tube Heat Exchanger (휜-관 열교환기의 착상 성능 최적화)

  • Yang Dong-Keun;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.974-980
    • /
    • 2005
  • The optimization of design factors on the frosting performance of a fin-tube heat exchanger is carried out using Taguchi method. The fin spacings of the heat exchanger are selected as design factors. Optimum values of the design factors under operating conditions of a household refrigerator/freezer are proposed. The average heat transfer rate and operating time of the optimum models, compared to those of a reference model, are increased at most by $6.5\%$ and $12.9\%$, respectively.

Evaluation of Air-side Pressure Drop and Heat Transfer Performance of Brazing Fin-tube Heat Exchanger (브레이징 휜-관 열교환기의 공기측 열유동 성능평가)

  • 강희찬;강민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.957-963
    • /
    • 2003
  • The present work was conducted to investigate the air-side thermal-hydraulic performance of the brazing fin-tube heat exchanger. Pressure drop and heat transfer coefficient for a plain and a louvered fin configuration were compared numerically and experimentally. It was found that the heat transfer characteristics for the plain fin were similar to the developing flow in the rectangular channel. The louver fin showed about twice better heat transfer coefficient than the plain fin. Previous empirical correlations presented by Davenport, Sunden and Svantesson, Sahnoun and Webb, Chang and Wang, Achaichia and Cowell, and Kang were compared with the present experimental data.

Experimental Study on the Heat Transfer Characteristics of Spiral Fin-Tube Heat Exchangers (나선형 핀튜브 열교환기의 열전달 특성에 관한 실험적 연구)

  • Yun Rin;Kim Yongchan;Kim Sru;Choi Jong Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.529-535
    • /
    • 2005
  • This study experimentally examines the air-side performance of spiral finned tube heat exchangers. The effects of fin spacing, fin height, and tube alignment were investigated. Reduction of fin spacing decreased the Colburn j factor. However, the effect of fin height on the Colburn j factor was negligible. An increase of tube row decreased the Nusselt number for both staggered and in-line tube alignments. However, the decrease of the Nusselt number for the in-line tube alignment was much more significant than that of the staggered tube alignment. The average Nusselt number of the staggered tube alignment was larger than that of the in-line tube alignment by $10\%$ when the Reynolds number ranged from 300 to 1700. An empirical correlation of the Nusselt number was developed by using geometric parameters of heat exchanger and correction factors. The correction factor considered the effects of tube alignment and number of tube rows on the heat transfer. The proposed correlation yielded a mean deviation of $4\%$ from the present data.

An Experimental Study on the Airside Performance of Fin-and-Tube Heat Exchangers Having Wide Louver Fin (광폭 루버 핀이 장착된 핀-관 열교환기의 공기측 전열 성능에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.254-262
    • /
    • 2015
  • Heat transfer rate can be increased by increasing the heat transfer area. In this study, wide louver fin-and-tube heat exchangers with $P_t/P_l=1.03$ were tested and compared with louver fin-and-tube heat exchanger with $P_t/P_l=0.6$. Results show that heat transfer capacities of wide louver samples are larger (9.8% at one row, 13.6% at two row and 4.1% at three row) than those of conventional louver samples. Considering the area ratio of 1.78, the increase of heat transfer capacity is rather small, possibly due to the smaller heat transfer coefficient and fin efficiency of the wide louver sample. The j factor of the louver fin was 67% larger at one row, 42% larger at two row and 52% larger at three row. The f factor of the louver fin was 81% larger at one row, 63% larger at two row and 60% larger at three row. The effect of fin pitch on j and f factors are not pronounced and the j factor decreased as the number of tube row increased.

Air-Side Performance of Fin-and-Tube Heat Exchanger with Copper Plate or Copper Spiral Fins (구리 재질의 평판 핀과 나선형 핀이 사용된 핀-관 열교환기의 공기측 성능)

  • Lee, Jin-Wook;Park, Ji-Hoon;Lee, Jung-Pyo;Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.269-278
    • /
    • 2011
  • We investigate the heat-transfer and pressure-drop characteristics of fin-and-tube heat exchangers with a copper plate or copper spiral fins. Twenty-four samples with different fin pitches and tube rows were tested. For both configurations, the effect of the fin pitch on the j factor is negligible, and the f factor increases with the fin pitch. The effect of the tube row depends on the configuration. For plate fin-and-tube heat exchangers, the j factor decreases as the row number increases; the reverse is true for spiral exchangers. We explain this by considering the flow pattern. The j factor for plate fin-and-tube heat exchangers is larger than that for spiral exchangers, and the difference decreases as the row number increases. The f factor of the plate fin-and-tube heat exchanger is also larger. We compare our results with existing predictions of correlations.

The Effect of PVE Oil on the Evaporation/Condensation Heat Transfer Performance of Fin-tube Heat Exchanger (핀-튜브 열교환기에서 PVE오일이 증발/응축 열전달 성능에 미치는 영향)

  • Lee, Hyun-Woo;Jeong, Young-Man;Lee, Jae-Keun;Park, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1067-1072
    • /
    • 2009
  • In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.

  • PDF

Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel (함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석)

  • Park, Hyoung Hun;Hwang, Yang Jin;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

A Study on the Thermal Performance of Fin and Tube Sensible Heat Exchanger according to Fin Geometry and Flowrate (휜 형상 및 유량에 따른 휜-관 현열 열교환기의 전열성능에 관한 연구)

  • Lee, Min-Su;Jeon, Chang-Duk;Lee, Jin-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.402-407
    • /
    • 2008
  • This study is performed to investigate heat transfer characteristics for thermal performance of fin-and-tube sensible heat exchangers under the low air flowrate according to fin geometry combination and coolant flowrate control. Fins and tubes of samples were separated between front row and rear row. Experiment results are plotted heat transfer rate of each row, heat transfer coefficient and sensible heat ratio against water flowrate control of each row. It is observed that thermal performance can be enhanced by fin geometry combination and water flowrate control of each row under the low air flowrate.

  • PDF