• 제목/요약/키워드: Fin-tube Heat Exchanger

검색결과 267건 처리시간 0.025초

R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구 (A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant)

  • 정규하;박윤철;오상경
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

영상처리 및 어파인변환을 이용한 핀튜브 열교환기 오염율 평가 알고리즘 개발에 관한 연구 (A study on the development of the fin-tube heat exchanger pollution ratio evaluation algorithm using Image Processing and Affine Transformation)

  • 박성민;정명인;황광일;조경래
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.11-17
    • /
    • 2022
  • Among the various factors that cause the performance decrease of heat exchangers used in many industries, flow path blocking is one of the important and serious factor. In order to solve this problem, proper maintenance and management of the heat exchanger is important and emphasized. In this study, we developed and algorithm that can quantitatively determine and diagnose the normal and blocked areas of fin-tube heat exchanger using pattern analysis, Gaussian Edge Detection, Image Processing and Affine Transformation techniques. The developed algorithms was applied to the actual heat exchanger and the performance was evaluated by comparing with the manual results. From these results, it was proved that the developed algorithm is effective in evaluating the pollution ratio of the fin-tube heat exchanger.

운전조건 변화에 따른 루버휜 열교환기 성능변화에 관한 실험적 연구 (An Experimental Study on the Performance of the Louver Fin Type Heat Exchanger by the Change of the Driving Condition)

  • 김정국;소산번;상원헌;김동휘;박병덕
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.440-445
    • /
    • 2008
  • The present study was investigated the effect of the driving condition on the performance of a louver fin and tube type heat exchanger under frosting condition. Heat transfer rate and pressure drop by frost were experimentally investigated. Effects of the wet blub temperature and the shape of a fin on heat transfer performances has been also investigated. The key parameters were fin type(louver and corrugate fin) and the wet blub temperature of air (0.5, 1.0, $1.5^{\circ}C$). The heat transfer performance of the louver fin and tube type heat exchanger was higher by 0.89% than the corrugate fin type. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models(Type A, B, C) were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the louver fin and tube type heat exchanger. As a experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was $0.2{\sim}0.4$ due to the high pressure drop.

  • PDF

2열 휜 튜브 열교환기의 공기측 압력강하 및 열전달 특성을 고찰하기 위한 확대 모형실험 (A large scale model test to investigate the pressure drop and heat transer characteristics in the air side of two-row heat exchanger)

  • 강희찬;김무환
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.113-124
    • /
    • 1997
  • This work is performed to investigate the pressure drop and heat transfer characteristics in the air side of finned-tube heat exchanger for air conditioner. Experimental apparatus and method are described to simulate the heat exchanger performance by using the three times enlarged model. The pressure drop and heat transfer coefficient were measured and compared for the heat exchangers with a plane fin and a commercial strip fin. The measured data for the strip fin agree well with those of prototype within a few percentages. For the plane fin, the measured data had similar trend to Gray & Webb's correlation at high air velocity, however a new correlation is needed to give more accurate prediction at low air velocity. It is found that most heat was transferred around the front row of the two-row heat exchanger, and the ratio of thermal load at the front tube row was increased for decreasing air velocity.

Optimal Design of Compact Heat Exchanger (Louver Fin-tube Heat Exchanger for High Heat Transfer and Low Pressure Drop)

  • Kang, Hie-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.891-898
    • /
    • 2011
  • The present work was conducted to get the best geometric information for the optimum design of the complex heat exchanger. The objective function for optimal design was expressed as a combination of pressure drop and heat transfer rate. The geometric parameters for the variables of louver pitch and height, tube width, etc., were limited to ranges set by manufacturing conditions. The optimum geometric parameters were calculated by using empirical correlations and theory. The sensitivity of the parameters and optimum values are shown and discussed. The weighting factor in the objective function is important in the selection of the louver fin-tube heat exchanger.

타원형휜-원형관 열교환기의 강제대류 열전달 특성 (CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER)

  • 강희찬;이종휘
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.1-6
    • /
    • 2010
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

타원형휜-원형관 열교환기의 강제대류 열전달 특성 (CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER)

  • 강희찬;이종휘
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.341-346
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and the different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

  • PDF

핀-관 열교환기의 착상 거동에 대한 표면 접촉각의 영향 (The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger)

  • 이관수;지성;이동욱
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.95-101
    • /
    • 2000
  • The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger is investigated experimentally. It is shown that both heat exchangers with hydrophilic and hydrophobic surfaces appear to have a better thermal performance than bare aluminium heat exchanger, but the improvements are very small. There is a little increase in the amount of the frost deposited onto the heat exchanger with both hydrophilic and hydrophobic surface. However, the effect of contact angle on the frost density is observed ; the frost with high density forms on the heat exchanger with hydrophilic surface ; and the frost with low density is deposited onto the heat exchanger with hydrophobic surface when compared with the frost deposited onto the heat exchanger with bare aluminium surface. This may be attributed to the fact that the shape of water droplets which condense on the surface of heat exchanger at the early stage of frosting varies with contact angle, and thus makes a difference on the structure of frost formation. From the experiments with different relative humidity of inlet air, it is shown that the variations of operating parameter make no influence on the effect of surface contact angle on the frosting behavior in the heat exchanger.

  • PDF

A Review on the Performance of Fin-and-Tube Heat Exchangers Under Frosting and Defrosting Conditions

  • Kim, Yong-Chan;Lee, Ho-Seong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권3호
    • /
    • pp.152-157
    • /
    • 2005
  • This paper reviews the literature on the performance of fin-and-tube heat exchangers under frosting and defrosting conditions. The effects of frosting and defrosting on the following parameters were discussed: frost growth, overall heat transfer coefficient, surface roughness, and surface characteristics on the heat exchanger. Comparisons of the experimental results and empirical correlations that were obtained from open literature were presented. In addition, a review of the defrosting methods was conducted.

대구경 타원관을 적용한 건조기용 핀-관 열교환기의 성능특성 (Performance Characteristics of Fin-Tube Heat Exchanger having Large Diameter Oval Tube for Dryer)

  • 배경진;차동안;권오경
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The objective of this paper is to provide design data of fin-tube heat exchanger which have a large diameter oval tube for dryer application. In this study, the heat transfer and pressure drop performance characteristics of the fin-tube heat exchanger were compared with Dittus-Boelter and a new correlation equation using Wilson plot method. The simulation results based on section by section method were compared with experimental results. These results showed that a new correlation equation using Wilson plot method provided better prediction, about 3 to 12%, than the Dittus-Boelter equation, from the experiment comparison. Also, the pressure drop of simulation results showed much more deviation with the experimental results.