• 제목/요약/키워드: Fin-tube Heat Exchanger

검색결과 267건 처리시간 0.027초

응축기의 설계조건에서 R22, R407C, R410A의 압력강하 예측 및 실험 (Prediction and Experiment of Pressure Drop of R22, R407C and R410A on Design Conditions of Condenser)

  • 김창덕;박일환;이진호
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.42-53
    • /
    • 2004
  • An experimental study on the refrigerant-side pressure drop of slit fin-tube heat exchanger has been carried out. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the pressure drop on design conditions of condenser in micro-fin tube for R22 and its alternatives, R407C (R32/125/134a, 23/25/52 wt.%) and R410A (R32/125, 50/50 wt.%). Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and mass fluxes varying from 150 to 250 kg/$m^2$s for R22, R407C and R410A. The inlet air conditions are dry bulb temperature of 35$^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.43 m/s. Experiments show that pressure drop for R410A and R407C were 17.8∼20.2% and 5∼6.8% lower than those of R22 respectively for the degree of subcooling of 5$^{\circ}C$. For the mass fluxes of 200∼250 kg/$m^2$s, the deviation between the experimental and predicted values for the pressure drop was less than $\pm$20% for R22, R407C and R410A.

휜형 원형관의 형상 최적화를 위한 다목적 전역 최적화 기법의 응용 (An Application of Multi-Objective Global Optimization Technique for Internally Finned Tube)

  • 이상환;이주희;박경우
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.938-946
    • /
    • 2005
  • Shape optimization of internally finned circular tube has been peformed for periodically fully developed turbulent flow and heat transfer. The physical domain considered in this study is very complicated due to periodic boundary conditions both streamwise and circumferential directions. Therefore, Pareto frontier sets of a heat exchanger can be acquired by coupling the CFD and the multi-objective genetic algorithm, which is a global optimization technique. The optimal values of fin widths $(d_1,\;d_2)$ and fin height (H) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.2\sim1.5\;mm,\;d_2=0.2\sun1.5\;mm,\;and\;H=0.2\sim1.5\;mm$. The optimal values of the design variables are acquired after the fifth generation and also compared to those of a local optimization algorithm for the same geometry and conditions.

냉매의 불균일한 분배가 증발기의 성능에 미치는 영향 (Effects on Refrigerant Maldistribution on the Performance of Evaporator)

  • 김창덕;이진호
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.230-240
    • /
    • 2004
  • An experimental investigation was conducted to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R22. A comparison was made between the predictions by previously proposed tube-by-tube method and experimental data for the heat transfer rate of evaporator. Experiments were carried out under the conditions of saturation temperature of 5$^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of 27$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71㎧. Experiment show that air velocity increased by 85.2% is need for T-type distributor with four outlet branches than that of two outlet branches under the superheat of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 130% for T-type distributor with four outlet branches as compared to two outlet branches.

R407C의 온도구배와 과열도가 증발기 성능에 미치는 영향 (Effects of the Temperature Glide and Superheat of R407C on the Performance of Evaporator)

  • 김창덕;전창덕;이진호
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.852-859
    • /
    • 2003
  • R407C is considered as an alternative refrigerant of R22 for air conditioners. An experiment was carried out to investigate the characteristics of the evaporation heat transfer and pressure drop for refrigerant R407C flowing in a fin-and-tube heat exchanger used for commercial air-conditioning unit. The experimental data were useful in analyze the effects of the temperature glide and superheat for R407C. Test were conducted at the conditions of inlet refrigerant evaporation temperature of 7$^{\circ}C$, inlet air relative humidity of 50%, and refrigerant mass fluxes varying from 150 to 250 kg/m$^2$s. Representative results show that the heat exchanger performance for R407C evaporation is significantly affected by the change of the flow pattern from two-phase to super-heated vapor flow.

저속 영역에서 루버휜이 장착된 평판관형 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구 (Air-side Performance of Louver-Finned Flat Aluminum Heat Exchangers at a Low Velocity Region)

  • 조진표;오왕규;김내현;윤백
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1681-1691
    • /
    • 2002
  • The heat transfer and pressure drop characteristics of heat exchangers with louver fins were experimentally investigated. The samples had small fin pitches (1.0 mm to 1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). At a certain Reynolds number (critical Reynolds number), the flattening of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L$_{p}$F$_{p}$) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. It is suggested that, for proper assessment of the heat transfer behavior, the louver pattern in addition to the flow characterization need to be considered. The heat transfer coefficient increased as the fin pitch decreased. At low Reynolds numbers, however, the trend was reversed. Possible explanation is provided considering the louver pattern between neighboring fins. Different from the heat transfer coefficient, the friction factor did not show the flattening characteristic. The reason may be attributed to the form drag by louvers, which offsets the decreased skin friction at a low Reynolds number. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 90% of the friction factor within $\pm$10%.10%.

휜-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics with Height of a Fin-Tube Liquid Desiccant Dehumidifier)

  • 이수동;박문수;정진은;최영석
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.594-603
    • /
    • 2004
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristics of working factor variables such as inlet solution flow rate, air flow rate, solution concentration and brine temperature have been analyzed. This dehumidifier has the ability to provide running while saving the latent heat load of total energy. The result of this experiment can provide useful data for hybrid air conditioning system.

동일한 유입온도조건에서 R134a와 R22 적용 응축기의 특성비교 (Comparison of Condenser Characteristics using R134a and R22 under the Same Inlet Temperature Condition)

  • 강신헝;변주석;김창덕
    • 에너지공학
    • /
    • 제15권3호
    • /
    • pp.166-173
    • /
    • 2006
  • 본 연구에서는 상용 냉동 공조기기에서 사용하고 있는 휜-관 열교환기에서 R22와 이의 대체냉매로 채용하고 있는 R134a 압력강하와 열전달 특성에 대해 실험적으로 연구하였다. 실험은 입구온도 $60^{\circ}C$, 질량유량 $150,\;200,\;250\;kg/m^{2}s$의 범위에 대해 수행하였다. 이때 공기의 유입조건은 전구온도 $35^{\circ}C$, 상대습도 40%, 공기유속은 $0.68{\sim}1.6m/s$이다. 실험 결과 응축기 출구의 과냉도를 $5^{\circ}C$로 유지한 경우 Rl34a의 필요공기유속은 R22보다 5.9%작게 나타났으며, R134a의 압력강하는 R22보다 $18.1{\sim}20.4%$의 범위 내에서 크게 나타났다.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

발전소용 공랭식 응축기(ACC)의 작동조건 변화에 따른 성능특성에 대한 수치적 연구 (A Numerical Study on the Performance Characteristics of a Power Plant Air-Cooled Condenser (ACC) Affected by Changes in Operating Conditions)

  • 박경민;주기홍;박창용
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.243-250
    • /
    • 2017
  • A numerical study was conducted to calculate the cooling capacity variation of a power plant ACC (air-cooled condenser) caused by changes in operating conditions. A numerical model was developed using the ${\varepsilon}-NTU$ and finite volume method, containing 100 elements for a single low fin tube. The model was validated through a comparison of cooling capacity between the simulated values and manufacturer's data. Even though simple assumptions and previously presented heat transfer correlations were applied to the model, the prediction error was 1.9%. The simulated variables of the operating conditions were air velocity, air temperature, and mass flux. The analysis on the variation of thermal resistance along the tube showed that the water side thermal resistance was higher than the air side thermal resistance at the downstream end of the tube, indicating that the ACC capacity could be increased by applying technology to enhance in-tube flow condensation heat transfer.

열교환기 형상에 따른 분리형 히트파이프 성능 비교 (Separate type heat pipe performance comparison by the heat exchanger shapes)

  • 전성택;조진표
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.723-729
    • /
    • 2016
  • 본 연구에서는 핀-관형 히트파이프와 평행류형 히트파이프 제작하여 시험하였으며 분리형 히트파이프의 작동유체의 충진량은 40~60(% vol.), 풍량은 300~1,400 사이에서 변화시켜가며 온도교환 효율, 열회수량, 공기측 압력강하를 비교하였다. 온도교환 효율은 두 종류의 히트파이프 모든 경우에서 저 풍량에서는 작동유체 충진량이 40(%vol.)일 때가 가장 높았으며 풍량이 증가함에 따라 최대 효율을 가지는 작동유체 충진량이 다름을 알 수 있었고, 환기량이 작을수록 온도교환 효율이 높게 나타났다. 평행류형 히트파이프 60(%vol.)의 실험결과에서 보는 것과 같이 작동 유체를 너무 많이 충진하게 되면 오히려 낮은 온도교환 효율을 보이는데 이는 관벽의 액막이 두터워지면서 열전달 효과를 악화시킨 결과로 최적 충진량이 40~50(%vol.) 사이에 있음을 알 수 있다. 풍량 변화에 따른 공기측 압력강하 비교에서는 증발부 히트파이프가 응축부 히트파이프 보다 크게 계측 되었는데 증발부 표면에 생긴 결로수의 영향으로 생각된다. 평행류형 히트파이프는 핀-관형 히트파이프와 비교하여 냉매 충진량은 48%, 체적은 41%에서 동등이상의 성능을 보였으며, 공기측 압력강하도 37% 정도로 좋은 성능을 나타내었다.