• Title/Summary/Keyword: Fin-tube Heat Exchanger

Search Result 268, Processing Time 0.027 seconds

Air-side Heat Transfer and Friction Characteristics of Fined-tube Heat Exchangers under Heating Condition (핀-관 열교환기의 난방운전 시 공기측 열전달 및 마찰특성)

  • Kwon, Young Chul;Chang, Keun Sun;Ko, Kuk Won;Kim, Young Jae;Park, Byung Kwon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.476-482
    • /
    • 2006
  • An experimental study has been performed to investigate the characteristics of air-side heat transfer and friction of a fined tube heat exchanger under heating conditions. Air enthalpy calorimeter was used to obtain the performance evaluation and analysis of the fined tube heat exchanger. Eight finned tube heat exchangers with slit fin, louver fin, and plain fin were used. The air-side heat transfer coefficient was calculated by the log-mean-temperature-difference. Air-side heat transfer and friction were presented in terms of j factor and friction factor on Reynolds number. From the experimental result, it was found that the variations of air-side heat transfer and friction of fined tube heat exchanger with the change of the fin configuration, row number, fin pitch, and tube circuit were obtained. j factor and friction factor decreased with Reynolds number increased. The tube circuit affected the air-side heat transfer and friction. In the case of slit and louver fin, j factor of 1st row was higher than that of 2nd row. But, with increasing Re, j factor was reversed. The characteristics of j factor and friction factor of 2nd row heat exchanger were different according to the kind of fins.

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF

Local Heat Transfer Characteristics on Fin Surface of Plate Fin - Oval Tube with Delta Wing Vortex Generators (Plate fin-oval tube 열교환기에서 와류발생체에 의한 fin 표면에서의 국소 열전달 특성)

  • Shin, Seok-Won;Chung, In-Kee;Kim, Soo-Youn
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2390-2395
    • /
    • 2007
  • The present research was experimentally performed to analyze the effect of delta-wing vortex generators(DWVG) on the heat transfer of fin surface of the plate fin-oval tube. The local heat transfer coefficient of the fin surface for four kinds of DWVG's arrangement was measured by the naphthalene sublimation technique for Reynolds numbers ranging from 2000 to 3200. The results showed that the heat transfer of the plate fin-oval tube can be significantly enhanced by DWVG for relatively low Reynolds numbers.

  • PDF

A Development of Heat Exchanger by using Small Bore Two-Port Tube (연결세경관을 이용한 열교환기의 개발)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • The fin and tube type heat exchangers widely used in air conditioners have been developed to improve on the heat transfer performance and compactness. This study presents the new type of tube for the heat exchanger to improve the heat transfer performance by increasing the heat transfer area per unit volume in the air-conditioner heat exchanger. The new type tube can be used for mechanical expansion facility, due to the two-port copper tube. Numerical calculation shows that the heat exchanger using the two-port copper tube outperforms the conventional heat-exchanger using a circular copper tube, in terms of the increased heat transfer coefficient and higher pressure drop. The calculation results were experimentally validated and are in agreement with the experimental results. Compared to the heat exchanger using a conventional circular tube, the heat exchanger with a two-port tube increased the heat transfer coefficient up to 21%, and the pressure dropped up to 16%.

Experimental Study on the Performance Change of the Fin and Tube Type Heat Exchanger by the Frosting (착상에 의한 휜관형 열교환기의 성능변화에 관한 실험적 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Park, Byung-Duck;Kim, Dong-Hwi;Sa, Yong-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • The present study was investigates the effect of the parameters on the frost formation and heat transfer performance such as fin shape, air temperature and air velocity. Heat transfer rate and pressure drop by frost were experimentally investigated. Effect of the wet blub temperature and air velocity on the heat transfer performance has been also investigated. The heat transfer performance of the louver fin and tube type heat exchanger was higher by maximum of 0.85% than the corrugate fin type at the air temperature of $2.0/1.5^{\circ}C$. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the Type B louver fin heat exchanger. As an experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was only $0.2{\sim}0.4$ due to the high pressure drop.

An Experimental Study on the Heat Exchange Performance at Various EGR Cooler Types (EGR 쿨러 Type에 따른 열교환성능에 관한 실험적 연구)

  • Shon, Jungwook;Woo, Seungchul;Park, Jongwook;Chun, Taesoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.608-614
    • /
    • 2015
  • Nitrogen oxide(NOx) emission reductions are required to meet the strict emission regulations for environmental protection. Most of the Exhaust Gas Recirculation(EGR) system applied to a diesel engine can relatively decrease the NOx at a low cost, but it has a disadvantage in that the PM generation is promoted due to the hot intake air temperature. Thus, high heat exchange efficiency of the EGR cooler is required for an effective removal of NOx. In this study, heat exchange efficiency for various types of heat exchangers used in EGR cooler was measured under same conditions, and determined best heat exchange performance shape depending on type of heat exchanger.

Experimental Study on the Airside Performance of Fin-and-Tube Heat Exchangers Having Wide Louver Fins Under Wet Conditions (광폭 루버 핀이 장착된 핀-관 열교환기의 습표면 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.719-726
    • /
    • 2015
  • One method of increasing the heat-transfer rate is to increase the heat-transfer area. In this study, we test a wide louver fin-and-tube heat exchanger with $P_t/P_l$ = 1.03, and we compare the results with those of a louver fin-andtube heat exchanger with $P_t/P_l$ = 0.6. The results obtained show that the heat-transfer capacities of the wide louver samples are larger (16% in one row, 29% in two rows, and 38% in three row samples) than those of the louver samples. Considering the area ratio of 2.17, the increase in the heat-transfer capacity is somewhat small. The reason for this may be due to the smaller heat-transfer coefficient and fin efficiency of the wide louver sample. The effect of the fin pitch on the j and f factors are not profounded. The j and f factors decreased as the number of tube rows increased. We compare the data obtained with existing correlations.

Heat Transfer Characteristics of Individual Rows for Fin-and-Tube Heat Exchangers (핀-관 열교환기의 열별 열전달 특성)

  • Kim, Nae-Hyun;Shin, Tae-Ryong;Han, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.149-155
    • /
    • 2007
  • The row-by-row heat transfer characteristics of fin-and-tube heat exchangers were experimentally investigated. Three wavy fin samples having different rows (one, two and three) and one plain fin sample (three row) were tested for $600{\leq}Re_{D}{\leq}4,000$. The heat transfer data were obtained for individual rows, and the corresponding heat transfer coefficients were reduced from the data. Results showed that the heat transfer coefficients were strongly dependent on the tube row. The heat transfer coefficient decreased as the tube row increased. However, the row effect was different depending on the fin shape. For the wavy fin, the row effect significantly decreased as the Reynolds number increased, yielding approximately the same heat transfer coefficients at $Re_{D}{\approx}2,500$. For the plain fin, however, the row effect lasted for the whole Reynolds number range. The increased mixing of bulk flow by wavy channels appears to induce high heat transfer coefficient (accordingly diminishing row effect) at downstream rows. The heat transfer coefficients of individual rows were higher for heat exchangers having larger tube rows.

Wet Surface Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes (사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 습표면 성능)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2415-2423
    • /
    • 2015
  • Experiments were conducted on sine wave fin-and-tube heat exchangers having oval tubes under wet condition. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. Results showed that, for oval tube samples, the effect of fin pitch on j and f factor was not significant. As for the effect of tube row, the lowest j factor was obtained for one row configuration(81% of two row configuration), which is clear contrast to round tube samples, where the highest j factor was obtained for one row configuration. Possible reasoning is provided considering the flow and heat transfer characteristics of sine wave channel combined with connecting oval tubes. Comparison of $j/f^{1/3}$ with plain fin-and-tube heat exchanger having 15.9mm O.D. round tube reveals that present oval fin-and-tube heat exchanger shows superior thermal performance except for one row configuration. In other words, $j/f^{1/3}$ of the two row oval tube heat exchanger was 1.6~2.5 times larger than those of round tube heat exchanger, 1.4~2.4 times larger for three row configuration and 1.2~2.8 times for four row configuration.

The Effect of Water Contact Angles of the Fin Surfaces of the Fin-and-Tube Heat Exchangers on the Water Hold-up (핀-관 열교환기에서의 핀의 물 접촉각이 응축잔수량에 미치는 영향)

  • 신종민;이남교;한성주;하삼철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.490-496
    • /
    • 2001
  • An experimental study on the behavior of the water hold-up by condensation of a fin-and-tube heat exchanger with regard to the surface characteristics, i.e., contact angle, was conducted. The static and dynamic contact angles were measured, and condensation experiments were conducted. Flow patterns on the fins with different surface characteristics were visualized. Results showed that the static contact angle is proportional to the dynamic contact angle within the range of this study. The water hold-up of the heat exchanger increases as the static or dynamic contact angle of its surfaces increases. Existence of transition of flow patterns was found as the static or dynamic angle increase. Due to the transition in the flow patterns, changes in the gradient of the water hold-up is occurred around the static angle of 8$0^{\circ}C$.

  • PDF