• Title/Summary/Keyword: Fin-and-tube

Search Result 453, Processing Time 0.02 seconds

Heat Transfer Performance of Individual Rows in Fin-Tube Heat Exchangers (2열 핀-관 열 교환기의 열별 전열성능 측정)

  • 권영철;정지환;장근선;홍기수;진심원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.280-286
    • /
    • 2004
  • An experimental study is peformed to examine the heat transfer performance of individual rows of fin-tube heat exchangers. The heat transfer performance is measured using an air-enthalpy type calorimeter. The examined heat exchangers consist of 7mm tube and fin patterns of them are slit and louver types. Equivalent fin spacings are 18 fins per inch(fpi) for all samples, and the number of tube rows are two. In order to confirm that thermal boundary condition on fins of each row are the same, physically separated between two rows as well as connected heat exchangers are used. The frontal air velocity is varied from 0.7 to 2.5㎧. Heat transfer performance for each row is measured. It is observed that the heat transfer coefficient of the second row is smaller than that of the first row at low Reynolds number while larger at high Reynolds number.

Condensation heat transfer characteristics of alternative refrigerants for CFC-11, CFC-12 for enhanced tubes (열전달 촉진관에서 CFC-11 및 CFC-12 대체냉매의 응축 열전달 특성 연구)

  • 조성준;황수민;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.569-580
    • /
    • 1998
  • In this study, condensation heat transfer coefficients(HTCs) of a plain tube, low fin tube, and Turbo-C enhanced tube for CFC-11, HCFC-123, CFC-12, HFC-l34a are measured and compared against each other. All data are taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling temperature 3~8$^{\circ}C$. Test results show that HTCs of a low vapor pressure refrigerant, HFC-123, for a plain, low fin, and Turbo-C tubes are 10.5~20.5%, 8.2~12.2%, 16.5~19.2% lower than those of CFC-11, respectively. On the other hand, HTCs of a medium vapor refrigerant, HFC-l34a, for a plain, low fin, and Turbo-C tubes are 20.6~31.8%, 0.0~8.0%, 13.2~20.9% higher than those of CFC-12, respectively. For all refrigerants tested, HTCs of Turbo-C tube are the highest among the three tubes showing almost 8 times increase in HTCs as compared to those of a plain tube. Nusselt's prediction equation for a plain tube yielded 12% deviation for all plain tube data while Realty and Katz's prediction equation for a low fin tube yielded 20% deviation for all low tube data.

  • PDF

Heat Transfer Performance of Individual Rows in Fin-Tube Heat Exchangers (핀-관 열교환기에서 개별 열의 열전달 효과)

  • Jeong, Ji-Hwan;Chang, Keun-Sun;Lee, Hyun-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.238-244
    • /
    • 2003
  • An experimental study was performed to examine the heat transfer performance of individual rows of fin-tube heat exchangers. The heat transfer performance was measured using air-enthalpy type calorimeter. The examined heat exchangers consists of $7{\Phi}$ tube and fin patterns of them are slit and louver types. Equivalent fin spacing are 18 FPI for all samples, and the number of tube rows were 2. In order to confirm that thermal boundary condition on fins of each row are the same, physically separated between two rows as well as connected heat exchangers were used. The frontal air velocity varied from 0.7 to 2.5 m/s. Heat transfer performance for each row are measured. It was observed that the heat transfer coefficient of the 2nd row were smaller than that of the 1st row at low Reynolds number while larger at high Reynolds number.

  • PDF

Analysis of Laminar Flow Through Internally Finned Tube (Fin이 부착된 원관내를 통과하는 층류 유동해석)

  • 정호열;정재택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.254-260
    • /
    • 2002
  • There have been many studies for the flow through internally finned tube, since the heat exchangers with fin device derive much attention in heat transfer enhance cent. In this study, analysis of laminar flow through the circular tube with longitudinal fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar and conformal mapping is used to obtain analytic solution. From the analytic solution, equi-velocity lines are shown, and the flow rate through the finned tube is calculated for various fin heights and numbers of fins. Darcy friction factor for this finned tube and shear stress distributions on the wall and fin are also considered.

Natural Convection Heat Transfer from a Horizontal Heat Exchanger Tube with a Fin (單一핀을 가진 水平管에서의 自然對流 熱傳達)

  • 정한식;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.279-286
    • /
    • 1987
  • An numerical and experimental study has been performed on natural convection heat transfer from a horizontal heat exchanger tube with a fin. At s bare tube, by increasing $C_{T}$ (tube conduction parameter), mean Nusselt number and outer wall temperature are apparently increased at $C_{T}$.leq.300, slightly increased at $C_{T}$>300 and they can be represented in an exponential function of $C_{T}$. Natural convection heat transfer characteristics for the tube with a fin at given Rayleigh number are well agreed by those for an isothermal cylinder at a modified Rayleigh number. The local fin Nusselt number of the tube with a downward fin is much higher than that of the tube with an upward fin. The comparisons between numerical and experimental results showed good agreement.reement.

A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect (전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구)

  • Han, Gyu-Il;Jo, Dong-Hyeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF

Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes (사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 성능)

  • Choi, Byung-Nam;Yi, Fung;Sim, Hyun-Min;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.279-288
    • /
    • 2013
  • Heat transfer and pressure drop characteristics of fin-and-tube heat exchangers having sine wave fins and oval tubes were investigated. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7 mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. The effect of fin pitch on the j and f factors was negligible. The effect of the tube row on the j factor, however, was different from that of common fin-and-tube heat exchangers having plain fins and round tubes. The highest j factor was obtained for a two-row configuration, while the lowest one was obtained for a one-row configuration. A possible reason was attributed to the flow mixing characteristics of the sine wave channel of the present geometry. Comparison with a plain fin-and-tube heat exchanger having 15.88 mm O. D. round tube reveals that the present oval fin-and-tube heat exchanger shows generally superior thermal performance, except for the one-row configuration.

A Review of Fin-and-Tube Heat Exchangers in Air-Conditioning Applications

  • Hu, Robert;Wan, Chi-Chuan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.85-100
    • /
    • 2007
  • This study presents a short overview of the researches in connection to the fin-and-tube heat exchangers with and without the influence of dehumidification. Contents of this review article include the data reduction method, performance data, updated correlations, and the influence of hydrophilic coating for various enhanced fin patterns. This study emphasizes on the experimental researches. Performance of both sensible cooling and dehumidifying conditions are reported in this review article.

Performance Comparison of 7mm Fin-Tube Heat Exchangers for Various Design Conditions (설계 조건에 따른 7mm 직경 핀-관 열교환기의 성능비교)

  • Chang, Keun-Sun;Kim, Hyuk;Hong, Seok-Ryul;Kim, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.633-638
    • /
    • 2006
  • This study presents the air side heat transfer and friction characteristics of fin-tube heat exchangers with various fin types. A total of 8 samples of heat exchangers are tested. Fin patterns tested are slit, louver and plate fins. Each fin type has three cases of number of tube rows(N=1, 2, 3) and two different fin pitches. The results are plotted in terms of Colburn j-factor and friction factor f with respect to Reynolds number in the range of 200 to 510.

  • PDF

Heat Transfer Characteristics on Design Conditions of Finned-Tube Evaporators (설계조건에 따른 핀-튜브 증발기의 열전달 특성)

  • 강희정;이윤수;권영철;장근선;김영재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • To investigate the design effects of a heat exchanger on a tube type, a tube circuit and a fin pitch, an experimental study on the heat transfer characteristics of finned- tube evaporators was performed. The refrigerant was R-22. A refrigerant loop was established to measure the heat transfer rate, the air heat transfer coefficient. The experimental results showed that the heat transfer characteristics of the evaporators were affected by the design parameters. And the heat transfer rate of the slit fin was better about 25%, compared to those of the louver fin. In the present experimental range, the heat transfer performance with the straight tube circuit was more remarkable than that of the zigzag tube circuit, as seen from temperature variations of the evaporator exit. $\jmath$-factor on the tube type, the tube circuit and the fin pinch decreased, as increasing Reynolds number.