• 제목/요약/키워드: Fin-and-Tube Heat Exchanger

검색결과 263건 처리시간 0.027초

확대모형을 이용한 휜-관 열교환기의 휜 형상 및 휘 간격 변화에 따른 공기측 성능에 관한 연구 (A study on airside performance of finned-tube heat exchanger according to fin combination and fin pitch variation of using large scale model)

  • 변주석;전창덕;이진호;김진우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.281-287
    • /
    • 2005
  • This study investigates the pressure drop and heat transfer characteristics of heat exchanger according to the combination of fin configuration and fin pitch of each row by the similitude experiments with the finned-tube geometry scaled as large as four times Finned-tube heat exchanger has 2 rows, and fin geometry consists of two cases, louver-louver and louver-slit. Fin pitch is varied with three types in each case, 6-6 mm, 8-8 mm and 8-6 mm. Results show that total heat transfer can be occurred evenly at each row by varying the fin pitch of 1st row and 2nd row. Heat transfer rate and pressure drop characteristics change according to the combination for fin geometry and fin pitch.

  • PDF

PF 열교환기를 적용한 공조기의 성능에 대한 실험연구 (Experimental Study on Performance of Air-conditioner with PF Heat Exchanger)

  • 서동남;엄유식;박경만;이상재;김대훈;권영철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.525-530
    • /
    • 2008
  • In the present study, the cooling performances of the air-conditioner applied the fin-tube and aluminum PF heat exchangers have been experimentally investigated by using the calorimeter. The experiment is carried out in the conditions of the standard temperature and the low temperature. Fin type of PF heat exchanger is a triangler and squarer form. PF heat exchanger has smaller refrigerant weight and larger capacity and COP han the fin-tube heat exchanger. The performance of PF-2 heat exchanger with the squarer in is more excellent than that of PF-1 heat exchanger with the triangler fin. The high pressure of PF heat exchanger decreases about 7%, compared to the fin-tube heat exchanger. Also, CSPF of the fin-tube and PF heat exchanger is evaluated.

  • PDF

핀-관 열교환기의 표면특성에 따른 착상 거동에 관한 연구 (A study on the behavior of frost formation according to surface characteristics in the fin-tube heat exchanger)

  • 류수길;이관수
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.377-383
    • /
    • 1999
  • In this study, the behavior of frost formation according to surface characteristics in the fin-tube heat exchanger has been examined experimentally. The results show that the thickness of the frost which is attached to the hydrophilic heat exchanger becomes thin and the air pressure drop is smaller than that of bare aluminium heat exchanger However, the frost mass of hydrophilic heat exchanger is more than the bare one. Hence, high density frost is attached to hydrophilic heat exchanger. The sensible and latent heat flux of hydrophilic heat exchanger is bigger than that of bare one, but the increasing amount is very small and the improvement of thermal performance is also very small. The variation of fin-pitch of heat exchanger shows little influence on frost formation and hydrophilic heat exchanger loses its surface characteristics rapidly with increasing relative humidity.

  • PDF

형상변수에 따른 나선형 원형핀-튜브 열교환기의 공기측 열전달 특성에 관한 실험적 연구 (Experimental Study on the Air-Side Heat Transfer Characteristics of a Spirally-Coiled Circular Fin-Tube Heat Exchanger According to Geometric Parameters)

  • 강태형;이무연;김용찬;윤성중
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.515-522
    • /
    • 2010
  • 본 연구의 목적은 무착상 조건에서 나선형 원형핀-튜브 열교환기의 형상변수에 따른 열전달특성을 고찰하고 평판 사각핀-튜브 열교환기와 열전달성능을 비교하는 것이다. 나선형 원형핀-튜브 열교환기는 Lfoot 길이 2.7 mm 에서 열전달계수가 최대로 나타났으며, 공기측 열전달계수는 튜브열수가 2 열에서 5 열로 증가하면서 평균 10% 감소하였고 핀피치가 5 mm 에서 10 mm 로 증가하면서 평균 17.5% 증가하였다. 모든 풍량조건에서 나선형 원형핀-튜브 열교환기의 튜브피치 30 mm 가 35 mm 보다 열전달량이 평균 5.1% 높게 나타났고 튜브두께 0.5 mm 가 0.7 mm 보다 열전달량이 평균 4.1% 높게 나타났다. 나선형 원형핀-튜브 열교환기의 열전달계수가 평판 사각핀-튜브 열교환기에 비하여 평균 24.3% 정도 높게 나타났다.

핀-관 열교환기에서의 접촉열저항 평가에 관한 연구 (A Study on the Thermal Contact Resistance Evaluation for Fin-Tube Heat Exchangers)

  • 정진;김창녕;윤백;길성호;양진승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.291-296
    • /
    • 2000
  • Usually the contact between fin collar and tube surface for fin-tube heat exchanger is secured by mechanical expansion of the tubes. The objective of the present study is to develop a method of measuring the thermal contact resistance between fin collar and tube surface for fin-tube heat exchanger. Also an experimental work has been performed to evaluate the thermal contact resistance, and a rigorous numerical analysis has been employed to calculate the contact resistance from the measured data. The experiments have been conducted fur the fin-tube heat exchangers with the tube of outer diameters 7 and 9.52 mm.

  • PDF

이산화탄소 사이클에서 열교환기의 형태 변화에 따른 성능특성 비교 (Comparison of Performance Characteristics with Heat Exchanger Type in $CO_2$ Cycle)

  • 배경진;조홍현
    • 설비공학논문집
    • /
    • 제22권10호
    • /
    • pp.657-664
    • /
    • 2010
  • The theoretical analysis of performance characteristics in a $CO_2$ cycle with the heat exchanger type was carried out. The size and performance of the fin-tube and microchannel heat exchanger were compared with operating conditions. As a result, the performance of the fin-tube gascooler and evaporator were more sensitive to the variation of operating condition compared to that of the microchannel gascooler and evaporator. Beside, the sizes of microchannel gascooler and evaporator could be decreased by 73% and 76%, respectively, compared to those of the fin-tube type gascooler and evaporator with the similar capacity. The COP and reliability of the $CO_2$ system can be increased by using a microchannel heat exchanger.

웨이브 및 웨이브-슬릿 열전달촉진 휜-관 열교환기의 공기측 압력강하 및 열전달 특성에 관한 실험 (Experimental study of air side pressure drop and heat transfer characteristics of wave and wave-slit fin-tube heat exchangers)

  • 윤백;길용현;박현연;유국철;김영생
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.589-599
    • /
    • 1998
  • Air side heat transfer and pressure drop for fin-tube heat exchanger with wave and wave-slit fins were measured for various fin spacings and number of tube rows. Outer diameter of the tube including fin collar is 10.07mm, and experiments were done with dry surface condition. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of the wave fin is 2mm. Experiments were conducted for 1, 2 and 3 rows and 3 different fin spacings, 1.3, 1.5 and 1.7mm. An attempt was made to demonstrate advantage of the enhanced fins over the plane fin by introducing the concept of fan power, Effect of the number of tube rows on heat transfer was discussed in connection with general mechanisms of heat transfer enhancement for fin-tube heat exchanger. Also the effect of hydrophilic coating was investigated. Lastly, correlations for Colburn j-factor and friction factor were developed.

  • PDF

환형휜이 부착된 두 개의 원형관 배열에 대한 강제대류 열전달 (Forced Convection Heat Transfer for Two Circular Tube Arrays with Annular Fins)

  • 김승일;박상희
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1093-1101
    • /
    • 2020
  • This study was carried out numerically to investigate the air flow and thermal performance around single and parallel fin-tube heat exchangers and the cooling performance of the fluid inside the heat exchangers. In this study, the air velocity(1~7m/s), the pitch of fin(4, 6.1, 8, 11.3, 18.3, 44mm) and the diameter of fin(31, 33, 35, 37, 39mm) were varied. The flow rate of the water at the fin-tube heat exchanger inlet is 89cc/min and the water temperature is 353K. The air temperature at the upstream region of the heat exchanger is 300K. flow rate of the water at the fin-tube heat exchanger inlet is 80cc/min and the water temperature is 353K. It was found that the air pressure drop around single and parallel fin-tube heat exchangers was highly dependent on the air velocity and the fin pitch, but was independent of the fin diameter. Also, it was shown that pressure drop increased more the parallel arrangements than in single heat exchanger. The temperature difference of water at the inlet and outlet of the heat exchanger depended on the air velocity, the fin pitch and the fin diameter, and it was found that the parallel arrangement method further reduced the temperature of water. It was shown that the Nusselt number increased as the Reynolds number and the fin pitch increased, and decreased as the fin diameter increased.

증발기의 설계조건에서 공기측 열전달계수 및 압력강하 산출 (Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Evaporator)

  • 김창덕;이진호
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1007-1017
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry and wet surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150∼250 kg/$m^2$s with air flows at velocity ranges from 0.3 m/s to 0.8 m/s.

응축기의 설계조건에서 공기측 열전달계수 및 압력강하 산출 (Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Condenser)

  • 김창덕;전창덕;이진호
    • 설비공학논문집
    • /
    • 제15권3호
    • /
    • pp.220-229
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150~250 kg/$m^2$s with air flows at velocity ranges from 0.6 m/s to 1.6 m/s.