• Title/Summary/Keyword: Fin temperature distribution

Search Result 65, Processing Time 0.021 seconds

Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석)

  • 김석일;조재완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.416-423
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/fin. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

  • PDF

Optimum Design of Liquid Cooling Heat Exchangers and Cooling-Fluid Distributors for a Amplifier Cabinet of Telecommunication Equipment (통신장비용 앰플리파이어 액체냉각장치 및 냉각유체 분배기의 최적설계 및 성능특성)

  • Yun, Rin;Kim, Yong-Chan;Kim, Hyun-Jong;Choi, Jong-Min;Cheon, Deok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Three liquid cooling heat exchangers for cooling of telecommunication equipment were designed and their cooling performances were tested. The liquid cooling heat exchangers had twelve rectangular channels $(5\times3 mm)$ with different flow paths of 1, 4, and 12. Silicon rubber heaters were used to provide heat flux to the test section. Heat input was varied from 75 to 400 W, while flow rate and inlet temperature of working fluid were altered from 1.2 to 4.0 liter/fin and from 15 to 3$30^{\circ}C$, respectively. The 4-path heat exchanger showed lower and more uniform average inner temperatures between heaters and the surface of heat exchanger than those of the others. To obtain optimal distribution of working fluid to each channels of liquid cooling heat exchangers, 2-3-2 and 4-3 type tube distributors were designed, and their distribution performances of working fluid were numerically and experimentally investigated. The distributor of the 2-3-2 type showed superior distribution performance compared with those of the 4-3 type distributor.

Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation (착상을 고려한 극저온 질소-대기 열교환기의 해석)

  • 최권일;장호명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

Effects on Refrigerant Maldistribution on the Performance of Evaporator

  • Lee, Jin-Ho;Kim, Chang-Duk;Byun, Ju-Suk;Jang, Tae-Sa
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.107-118
    • /
    • 2005
  • An experimental investigation was made to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R-22. Experiments were carried out under the conditions of saturation temperature of $5^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of $27^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71m/s. A comparison was made between the predictions from the previously proposed tube-by-tube method and the present experimental data for the heat transfer rate of evaporator. Results show that $82.5\%$ increase of air velocity is needed for T-type distributor with four outlet branches than that of two outlet branches under the superheat of $5^{\circ}C$, which resulted in increasing of air-side pressure drop of $130\%$ for the former as compared to the latter.

A Study on Heatsink Temperature Distribution according to the Installation Angle of a 30W LED Floodlight (30W급 LED 투광등 설치각도에 따른 히트싱크 온도분포에 관한 연구)

  • Lee, Young Ho;Yi, Chung Seob;Chung, Hanshik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.24-30
    • /
    • 2019
  • This study investigated the heat dissipation characteristics of a heat-sensitive LED. The results of the empirical test showed that the best temperature intensification was found at 90 with 15-fins, and the heatsink installed perpendicular to the direction of the flow of air was directly connected to the air in the largest heat shield area, leading to the best cooling, and the number of fin also resulted increase in the heat discharge area, resulting in the largest cooling action with 15 fins. It was found that the rate of air flow changed in the range of 1.5m/s to 2.5m/s, but only by a deviation of about $2^{\circ}C$ to $3^{\circ}C$ from the current state of 15 fins at 2.5m/s, and the rate of air flow increased, but the performance of the heat release was not significantly increased. As a result wind speed with minimum air flow conditions of 1.5m/s can greatly contribute to the heat dissipation performance.

Thermal Analysis of the Heat Sink Performance using FEM (유한 요소법을 이용한 히트싱크의 성능평가를 위한 열해석 연구)

  • Lee, Bong-Gu;Lee, Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5467-5473
    • /
    • 2014
  • This study examined the numerical analysis results with respect to the thermal behavior of a natural convection cooled pin-fin heat sink. The heat sink consisted of pin fins integrated with plate fins. The heat sinks were designed with two different types to fit the limited internal space. The two types of heat sinks designed were analyzed using the ANSYS software package, and the numerical analysis results were compared with the cooling performance of the two types of heat sinks. The results of the simulation were analyzed according to the temperature distribution and air flow characteristics, heat flux etc. This study examined the correlation of the cooling performance with the heat sink internal structure and fin shape. FEM (Finite Element Method) confirmed the cooling performance of heat sink type A under natural convection conditions as the best results. The results of the numerical simulation showed that the heat sink type A shape showed an approximately 70 percent better heat transfer rate with natural convection than that of type B.

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

Performance Comparison of Fin-Tube Type Evaporator using R134a and R1234yf under the Frost Condition (착상조건에서 R134a와 R1234yf를 적용한 핀-관 형태의 증발기 성능 비교)

  • Shin, Yunchan;Kim, Jinhyun;Cho, Honghuyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5795-5801
    • /
    • 2015
  • The low temperature distribution of the refrigerated and frozen food has been increased gradually. Refrigeration industry is using R134a refrigerant, which GWP is 1300. R1234yf is an alternative refrigerant of R134a because GWP of R1234yf refrigerant is just 4. Evaporator used in refrigeration truck refrigeration system is operated on low temperature condition. Accordingly, evaporator is formed frost and the formation of frost is rapidly decreased performance of evaporator. In this study, the performance of evaporator using R134a and R1234yf refrigerant was analyzed with operating conditions under frost condition. As a result, the performance of R134a evaporator according to air inlet temperature, relative humidity and evaporating temperature was more sensitive than R1234yf evaporator. Besides, the frost growth of R134a evaporator is steeper than that of R1234yf one.

An Experimental Study on the Performance of Outdoor Heat Exchanger for Heat Pump Using $CO_{2}$ ($CO_{2}$이용 열펌프의 실외열교환기 성능에 관한 실험적 연구)

  • Chang Young Soo;Lee Min Kyu;Ahn Young San;Kim Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2005
  • The purpose of this study is to investigate the performance of outdoor heat exchanger for heat pump using carbon dioxide. Two types of fin and tube heat exchangers (2 rows for type A and 3 rows for B) are tested. Both heat exchangers have counter-cross flow and 1-circuit arrangement. Test results such as heat transfer rate, pressure drop characteristics and temperature distribution in the heat exchanger are shown with respect to mass flow rate of refrigerant and frontal air velocity For cooling mode, the minimum temperature difference between air and refrigerant of type B is smaller than that of type A by $1^{circ}C$, but the pressure loss of air side is much higher for type B by $29\%$. It is found that a large temperature gradient of carbon dioxide during gas cooling Process Promotes thermal conduction through tube wall and fins which results in degradation of heat transfer performance. For heating mode operation, type B heat exchanger shows higher heat transfer performance compared to type A. However, because pressure loss of refrigerant side of type B is much greater than that of type A, the refrigerant outlet pressure of type B becomes lower than that of type A.

Early Life History of Acheilognathus macropterus (Pisces:Cyprinidae) in the Wicheon Stream of Nakdonggang River (낙동강 수계 위천에 서식하는 큰납지리(Acheilognathus macropterus) (Pisces : Cyprinidae)의 초기생활사)

  • Jae-Min Park ;Kyeong-Ho Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.5
    • /
    • pp.676-683
    • /
    • 2023
  • The development of the egg, larvae, and juveniles of Acheilognathus macropterus from the Wicheon stream of Nakdonggang River was investigated for early life history characteristics. The fish used in the study were collected from Wicheon stream located in Bian-myeon, Uiseong-gun, Gyeongsangbuk-do. The fertilized egg was 1.88±0.09 mm (n=30) in long diameter and 1.34±0.06 mm (n=30) in short diameter. After fertilization at a water temperature of 20℃, the egg took 31 h and 40 min to hatch. Newly hatched larvae had an average total length of 3.92±0.13 mm (n=30) and possessed a yolk sac the mouth and anus were not developed. Twenty days after hatching, the postflexion larvae had an average total length of 8.08±0.29 mm (n=30), with the tail tip fully bent at 45° and began feeding. Thirty-three days after hatching, the number of fin stems reached an integer with an average total length of 15.0±1.08 mm (n=30). In this study, differences in the egg size, hatching time, melanophore development period, and distribution location were confirmed between A. macropterus and allied species.