• Title/Summary/Keyword: Fin temperature distribution

Search Result 65, Processing Time 0.027 seconds

An Experimental Study on Cooling Characteristic according to Fin Array of Aluminum Heat Sink (히트싱크의 핀 배열에 따른 냉각특성에 관한 실험적 연구)

  • Yoon, Sung-Un;Kim, Jae-Yeol;Gao, Jia-Chen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.138-143
    • /
    • 2018
  • In general, the operating temperature of electronic equipment is closely related to product life and reliability, and it is recognized that effectively cooling the parts is an important problem. In this paper, an experimental study on the cooling characteristic according to the pin array of the heat sink is conducted. The experiment on the heat sink was based on the natural convection and temperature distribution changes. The experimental results indicate that the pin array of the heat sink has an effect on the thermoelectric module's cooling characteristic.

The Efficiency Prediction for Plate Type Steam Reformer with Shape Change of Combustion Chamber (평판형 STR의 연소공간 형상변화에 따른 성능 예측)

  • Kim, Hun-Ju;Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Lee, Do-Hyung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.286-294
    • /
    • 2010
  • According to the propagation of fuel cell system, the importance of that system efficiency is being magnified. Thus, the efficiency improvement of reformer which is the important part of fuel cell system will be required. In structural aspect, the reformer is classified into cylindrical and plate type. Plate type reformer features better maintenance and space efficiency compared with cylindrical type. In this study, we changed the shape of combustion chamber to improve the reforming efficiency. And then we performed the CFD simulation to predict the spacial distribution of temperature. Analysis cased contains with baffles, fins, baffles and fins, and without those. In case of only with-baffle, temperature distributions were uneven because the high temperature stream was concentrated near the baffle end. In case of with-fin, the temperature distributions were relatively even than other cases.

Axisymmetric Thermal Analysis of 3D Regenerative Cooling System (3차원 재생 냉각 시스템의 축대칭 열해석)

  • Kim Sung-In;Park Seung-O
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • Axisymmetric numerical thermal analysis for a 3-dimensional regenerative cooling system in a rocket engine is carried out. To predict the accurate heat transfer with the stiff temperature distribution, several tests have been conducted for the grid size, the properties variation of the coolant and the combustion gas depending on temperature. The axisymmetric heat flux model is defined using fin efficiencies and is designed to be equivalent to the heat flux of the 3-dimensional coolant channel. For comparison purpose, the 1-dimensional analysis using Bartz equation is also conducted. The performance of the present model in predicting the cooling characteristics of a 3-dimensional regenerative cooling system is compared with the 3-dimensional results of RTE(Rocket Thermal Evaluation). It is found that the present method predicts much closer results to those of RTE code than 1-dimensional analysis.

A Numerical Study on the Effect of a Microfin with a Flexible Up-down Movement on Heat Transfer using a Fluid-structure Interaction (FSI) Method (양방향 유체-고체 연성해석을 통한 표면 위 미세날개의 진동이 열전달에 미치는 영향 분석)

  • Park, Ki-Hong;Min, June-Kee;Kim, Jin-Kyu;Kang, Seok-Hoon;Kim, Seong-Jin;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.975-983
    • /
    • 2011
  • A microfin on a heated surface and its effects of the heat transfer has been investigated. The thickness of the fin is about 8 micrometer to allow the flexible up-down motion of the fin. Two-way complete FSI (Fluid-Structure Interaction) method has been applied for the analysis. Firstly, the deformation of a microfin due to the pulsating flow is evaluated using structure analysis. The flow and temperature patterns are predicted by CFD (Computational Fluid Dynamics) method. At each time step, using the pressure force and temperature distribution from CFD, the deformation of the wing is evaluated by FEM. Also in order to estimate the resonance probability, the natural frequency of the wing structure is calculated by modal analysis. The proposed numerical procedure was validated through experiment using a single fin. Through this work, we show that the increase of 40% in heat transfer capacity using the microfin has been compared with that of flat plate case.

Heat Flux Calculation for Thermal Equilibrium of Cofferdam in a LNG Carrier (LNG선 Heating Coil의 설계를 위한 Cofferdam내 열정산)

  • Joo-Ho Heo;Young-Bum Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.98-106
    • /
    • 1998
  • This paper shows the temperature distribution of double hull compartment and of cofferdam in a large LNG Carrier. In LNG Carrier, due to the lower cargo temperature($-163^{\circ}C$), structures are forced to lose their strength if additional heat is not supplied. So it is very important to estimate the temperature distribution and the heat flux needed to maintain the structure properly. The temperature of each compartment is obtained using 2-dimensional model analysis and compared with 3-dimensional results. And also this paper gives preliminary estimation of pipe length to supply necessary heat flux in bare pipe and finned pipe.

  • PDF

Numerical Simulation of Natural Convection in Annuli with Internal Fins

  • Ha, Man-Yeong;Kim, Joo-Goo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.718-730
    • /
    • 2004
  • The solution for the natural convection in internally finned horizontal annuli is obtained by using a numerical simulation of time-dependent and two-dimensional governing equations. The fins existing in annuli influence the flow pattern, temperature distribution and heat transfer rate. The variations of the On configuration suppress or accelerate the free convective effects compared to those of the smooth tubes. The effects of fin configuration, number of fins and ratio of annulus gap width to the inner cylinder radius on the fluid flow and heat transfer in annuli are demonstrated by the distribution of the velocity vector, isotherms and streamlines. The governing equations are solved efficiently by using a parallel implementation. The technique is adopted for reduction of the computation cost. The parallelization is performed with the domain decomposition technique and message passing between sub-domains on the basis of the MPI library. The results from parallel computation reveal in consistency with those of the sequential program. Moreover, the speed-up ratio shows linearity with the number of processor.

Prevention of local overheating of a radiant tube heater (열처리용 복사튜브의 국부 과열 해소)

  • Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.119-125
    • /
    • 2004
  • Radiant tube heaters are widely used for indirect heating in heat treatment processes such as continuous annealing line(CAL) or continuous galvanizing line(CGL). Main issues for radiant tube are temperature uniformity, lifetime, thermal efficiency. To achieve higher heat release, the radiant tubes are fired at a higher fuel rate and therefore local overheating occur. A numerical simulation based on a commercial code FLUENT has been performed to investigate local overheating of radiant tube heaters. To minimize local overheating, the effects of radiating fins, flue gas recirculation(FGR), two-stage combustion were investigated. More uniform temperature distribution was achieved in the longitudinal direction within the tube with radiating fins and this contributed to increase the life of radiant tubes. Furthermore, the radiant tube with radiating fins was proven to be more efficient than the one without fins. The effects of flue gas recirculation and two stage combustion on the efficiency of the radiant tube were also considered and the results were presented.

  • PDF

Development of 2-dimensional model for thermal comfort in train (철도 차량 온열 쾌적성에 관한 2차원 모델 개발)

  • Yeon, Bong-Joon;Kim, Moon-Uhn;Kim, Man-Hoe
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.9-16
    • /
    • 2007
  • This study aims to suggest an evaluation method of thermal environment using CFD, not an experiment, which is usual in the field. Model train is the newly introduced Mugunghwa train. Since its compartment occupies a large space and chairs and other accessories make it a complicated structure, 3-D calculation might take too much time and effort to make evaluation itself possible. Therefore, we suggest a 2-D model to replace the original 3-D model for averaged temperature and temperature distribution in the cabin.

  • PDF

Effects on Refrigerant Maldistribution on the Performance of Evaporator (냉매의 불균일한 분배가 증발기의 성능에 미치는 영향)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.230-240
    • /
    • 2004
  • An experimental investigation was conducted to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R22. A comparison was made between the predictions by previously proposed tube-by-tube method and experimental data for the heat transfer rate of evaporator. Experiments were carried out under the conditions of saturation temperature of 5$^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of 27$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71㎧. Experiment show that air velocity increased by 85.2% is need for T-type distributor with four outlet branches than that of two outlet branches under the superheat of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 130% for T-type distributor with four outlet branches as compared to two outlet branches.

Morphological Variations in Relation to Geographical Distribution of Pond Smelt, Hypomesus olidus Pallas (한국산 빙어의 지리적 형태변이에 대하여)

  • Ryu Bong Suk;LEE Kyung Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.179-188
    • /
    • 1981
  • The authors made an investigation concerning the geographical distribution and some major differentiations in morphological characteristics associated with the each habitat, of the pond smelt, Hypomesus olidus, which was introduced into Korea more than 50 years ago. Major characteristics utilized for the comparison study were upper jaw (maxillary), number of fin rays, scale structure, vertebral count, number of pyloric caeca, number of gill rakers, and the relative measurements of these and other internal characters. 1. The main areas of natural distribution are Paro Lake, Soyang Lake, Han River, Euirim Lake, and Ogjeong Lake (or Unam Lake) and the tributaries of these waters. 2. Morphological variations varied when the mean values of measurements from each area were compared with the standard measurement value by mosaic comparison, and in some instances a significant variation was found. 3. The most significant variations were found in the number of fin rays of pectoral and anal fins; the lengths from the tip of snout to the origin of pectoral fin, from snout to ventral fin, and from snout to anal fin, relative to standard body length; eye depth relative to head length; upper jaw: the number of pyloric caeca and the scale structure. Variations, on the other hand, by each habitat were not clear in the numbers of ventral and dorsal fin rays, gill rakers, vertebrae and lateral line scale : and the depth of caudal peduncle and distance from the tip of snout to the origin of dorsal fin relative to standard body length. 4. The scales of pond smelt showed some differences in the shape of scales, the shape and position of the focus and the number of ridges according to the scale positions on the body. No radii were present. The relations between longitudinal and transverse diameters of the scale suggest that the pond smelts of Soyang Lake and Un-am Lake are closely related, and those of Han River and Euirim Lake are also closely related. 5. The geographical variations in morphology of the pond smelt seem to have resulted from the variations in turbidity, water temperature, salinity (rather conductivity) and currents. 6. From the results obtained, it may be concluded that such factors as supramaxillary, relation between scale length and its breadth, number of caudal vertebrae and eye depth relative to head length may be used as the key characters for the classification of geographical varieties of Pond smelt.

  • PDF