• Title/Summary/Keyword: Fin ratio

Search Result 162, Processing Time 0.028 seconds

Development of a High Flow CHF Correlation for the KMRR Fuel (KMRR 핵연료에 대한 고유량 임계열속 상관식 개발)

  • Park, Cheol;Hwang, Dae-Hyun;Yoo, Yeon-Jong;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.237-246
    • /
    • 1994
  • A high flow critical heat flux (CHF) correlation, based on the single-pin CHF experimental data for finned and unfinned heated rods, was developed for the thermal-hydraulic design and safety analysis of the Korea Multi-purpose Research Reactor (KMRR) core. The correlation consists of dimensionless parameters such as Reynolds number, thermodynamic equilibrium quality, liquid-to-vapor density ratio, and hydraulic equivalent diameter ratio. The fin effect was taken into account in the correlation by a finned-to-unfinned heated perimeter ratio. The effects of a cold wall and non-uniform axial power distribution ore discussed to verify the applicability of the single-pin based correlation to the KMRR fuel bundle. The correlation limit departure from nucleate boiling ratio (DNBR) was determined as 1.44 from the statistical analysis of the CHF data.

  • PDF

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

Analysis of a Geometrically Asymmetric Trapezoidal Fin with Variable Fin Base Thickness and Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.83-88
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin is analyzed using the one-dimensional analytic method. Heat loss and thermal resistance are represented as a function of the fin base thickness, base height, fm shape factor, inside fluid convection characteristic number, convection characteristic numbers ratio, fm length and ambient convection characteristic number. The relationship between the fin base height and the shape factor for equal amounts of heat loss is presented. One of the results shows that the variations of the fm base thickness and the inside fluid convection characteristic number give no effect on the thermal resistance.

A study on unsteady conjugate forced convection-conduction heat transfer from a plate fin (평판핀에서의 강제대류-전도 과도 복합열전달에 관한 연구)

  • 조진호;이상균
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.20-30
    • /
    • 1989
  • The unsteady conjugate forced convection-conduction heat transfer from a plate fin is numerically studied. The external forced flow is steady but the temperature of the fin base is an exponential change with time. Therefore, the unsteady energy equations of the fluid and the fin are solved simultaneously under the conditions of equality in heat flux and temperature at the fluid-fin interface at every instant of time. Numerical results are given for various quantities of interest including the local heat transfer coefficient, the local heat flux, the total heat transfer rate and the temperature distribution of fin under the effects of the convection-conduction parameter and the ratio of thermal diffusivities. The results of the present numerical solution have been compared with those of the conventional fin theory.

  • PDF

An Experimental Study on the Airside Performance of Fin-and-Tube Heat Exchangers Having Wide Louver Fin (광폭 루버 핀이 장착된 핀-관 열교환기의 공기측 전열 성능에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.254-262
    • /
    • 2015
  • Heat transfer rate can be increased by increasing the heat transfer area. In this study, wide louver fin-and-tube heat exchangers with $P_t/P_l=1.03$ were tested and compared with louver fin-and-tube heat exchanger with $P_t/P_l=0.6$. Results show that heat transfer capacities of wide louver samples are larger (9.8% at one row, 13.6% at two row and 4.1% at three row) than those of conventional louver samples. Considering the area ratio of 1.78, the increase of heat transfer capacity is rather small, possibly due to the smaller heat transfer coefficient and fin efficiency of the wide louver sample. The j factor of the louver fin was 67% larger at one row, 42% larger at two row and 52% larger at three row. The f factor of the louver fin was 81% larger at one row, 63% larger at two row and 60% larger at three row. The effect of fin pitch on j and f factors are not pronounced and the j factor decreased as the number of tube row increased.

A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect (전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구)

  • Han, Gyu-Il;Jo, Dong-Hyeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF

Heat/Mass Transfer on Effusion Plate with Circular Pin Fins for Impingement/Effusion Cooling System with Intial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 원형핀이 설치된 유출면에서의 열/물질전달 특성)

  • Hong Sung Kook;Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.828-836
    • /
    • 2005
  • Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging let, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing $16\%{\~}22\%$ enhancement of overall Sh value at high blowing ratio of M=1.5.

Study on heat transfer characteristics and structural parameter effects of heat pipe with fins based on MOOSE platform

  • Xiaoquan Chen;Peng Du;Rui Tian;Zhuoyao Li;Hongkun Lian;Kun Zhuang;Sipeng Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.364-372
    • /
    • 2023
  • The space reactor is the primary energy supply for future space vehicles and space stations. The radiator is one of the essential parts of a space reactor. Therefore, the research on radiators can improve the heat dissipation power, reduce the quality of radiators, and make the space reactor smaller. Based on MOOSE multi-physics numerical calculation platform, a simulation program for the combination of heat pipe and fin at the end of heat pipe radiator is developed. It is verified that the calculation result of this program is accurate and the calculation speed is fast. Analyze the heat transfer characteristics of the combination with heat pipe and fin, and obtain its internal temperature field. Based on the calculation results, the influence of structural parameters on the heat dissipation power is analyzed. The results show that when the fin width is 0.25 m, fin thickness is 0.002 m, condensing section length is 0.5425 m and heat pipe radius is 0.014 m, the power-mass ratio is the highest. When the temperature is 700K-900K, the heat dissipation power increases 41.12% for every 100K increase in the operating temperature. Smaller fin width and thinner fin thickness can improve the power-mass ratio and reduce the radiator quality.

A study on the development of the fin-tube heat exchanger pollution ratio evaluation algorithm using Image Processing and Affine Transformation (영상처리 및 어파인변환을 이용한 핀튜브 열교환기 오염율 평가 알고리즘 개발에 관한 연구)

  • Park, Sungmin;Jung, Myungin;Whang, Kwangil;Cho, Gyeongrae
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • Among the various factors that cause the performance decrease of heat exchangers used in many industries, flow path blocking is one of the important and serious factor. In order to solve this problem, proper maintenance and management of the heat exchanger is important and emphasized. In this study, we developed and algorithm that can quantitatively determine and diagnose the normal and blocked areas of fin-tube heat exchanger using pattern analysis, Gaussian Edge Detection, Image Processing and Affine Transformation techniques. The developed algorithms was applied to the actual heat exchanger and the performance was evaluated by comparing with the manual results. From these results, it was proved that the developed algorithm is effective in evaluating the pollution ratio of the fin-tube heat exchanger.

A Study on the condensate Retention at Horizontal Integral-Fin tubes (낮은 핀을 가진 수평관의 응축액 억류에 관한 연구)

  • 한규일;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF