• Title/Summary/Keyword: Fin Performance

Search Result 572, Processing Time 0.029 seconds

OPTIMAL DESIGN FOR COOLING SYSTEM OF DRIVING UNITS FOR HYBRID VEHICLES (하이브리드 자동차 구동시스템용 냉각 유로 최적화에 관한 연구)

  • Lee, K.H.;Kim, Jae-Won;Ahn, E.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 2009
  • The cooling system for electric devices of hybrid vehicles is examined. The present system is composed of coolant paths, inlet diffuser and heat sinks whose shapes are diamond and circular. In this work, inlet duct and fin arrays are combined in proposed models and examined by numerical calculations. Nusselt number and Reynolds number are considered for heat transfer performance. Main focus lies on the looking for optimal model for the cooling system adopted to compact driving module of a hybrid vehicle. The optimal model shows uniform flow patterns in the inlet diffuser and secondary flows after the fins attached to heat source. It is found that the vortical flows around the heat sinks are effective for heat removal mechanism.

Transient Computer Simulation of Evaporation and Condenser in an Automotive Air-Conditioning System (비정상과정에서 자동차 에어컨의 증발기 및 응축기의 컴퓨터 시뮬레이션)

  • Oh, Sang-Han;Shin, Dong-Woo;Won, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.19-24
    • /
    • 2000
  • The objective of this study is to develope a computer simulation model and estimate theoretically the transient performance characteristics of heat exchangers in an automotive air-conditioning system. To do that, the mathematical modelling of heat exchangers, such as evaporator and condenser, is presented first of all. For detail calculation, evaporator and condenser are divided into many sub-sections. Each sub-section is an elemental volume for transient modelling. The elemental volume is assumed to consist of three components, refrigerant, tube with fin, and air, and various properties including temperatures of three components are determined step along sub-sections. The properties of refrigerant R134a and air are calculated directly in the program. The heat transfer coefficients and pressure drop in single or two phase are also calculated by suitable empirical correlations. The overall tendencies of the simulation results were agreed well with those of actual situation.

  • PDF

An Experimental Study on Heat Transfer Characteristics of a Ripple Tube (RIPPLE TUBE의 열전달(熱傳達) 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Choi, Seong Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.316-326
    • /
    • 1990
  • The measurements of heat transfer and pressure drop were performed on ripple tube with air flow. The results with the tube were compared with the performance of smooth tube. The enhancements in heat transfer coefficient for ripple tube, being compared with smooth tube, was ranged from 7.4 to 39 percent. The local Nusselt number for the inner fin tube, being compared with that for smooth tube, varied from 7.4% to 39%, while the corresponding increase in friction factors were 4.1 to 8.1%. One of the most direct indications of Nusselt number of ripple tube is given as following equation: $$Nu=0.061Re^{0.75}Pr^{0.4}(Tb/Tw)^{0.5}$$ We can see that Nusselt number for ripple tube in this experiment is consistent with the theoretical one taken from Walkinson's equation at Reynolds number range from 8,000 to 20,000.

  • PDF

Thermal Dissipation Performance of a Heat Sink/Vapor Chamber Prepared by Metal Injection Molding Process

  • Chena, Bor-Yuan;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.767-768
    • /
    • 2006
  • In this study, copper vapor chambers with built-in cooling fins, which eliminated the soldered or brazed joints in the conventional vapor chamber, were fabricated using the metal injection molding process. The results show that with optimized molding parameters, fins with an aspect ratio up to 18 could be produced. After sintering, the densities of the fin and chamber reached 96%. With only 32 cooling fins and a small fan installed, the thermal resistance of the heat sink was $1.156^{\circ}C/W$, and the power dissipation was 40W when the junction temperature was $70^{\circ}C$. When copper powder was sintered onto the chamber to make a vapor chamber, the thermal resistance decreased to $1.046^{\circ}C/W$.

  • PDF

A Dynamic Characteristic of the Multi-Inverter Heat Pump with Frosting (착상을 수반한 멀티 가변속 열펌프의 동특성)

  • ;;Shigeru Koyama
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.337-345
    • /
    • 2003
  • In the case of heat exchangers operating under frosting condition, the growth of frost layer causes the heat exchanger to increase the thermal resistance and pressure loss of the air flow. In this paper, a transient characteristic prediction model of the heat transfer for multi inverter heat pump with frosting on its surface was presented taking into account the change of the fin efficiency due to the growth of the frost layer. In this dynamic simulation program, which was peformed for a basic air conditioning system model, such as evaporator, condenser, compressor, linear electronic expansion valve (LEV) and bypass circuit. The theoretical model was driven from the obtained heat transfer coefficient and mass transfer coefficient, independently. And we consider heat transfer performance was only affected by a decrease of the wind flow area. The calculated results were compared with some cases of experiments for frosting conditions.

A Study of Performance of Roll-plate type fin-tube Heat Exchanger for the Refrigerator (냉장고용 롤-플레이트형 휜-관 열교환기의 성능에 관한 연구)

  • Ahn, Sung-Jun;Kim, Jong-Su;Kwon, Oh-Boong;Park, Yong-Jong;Ha, Young-Ju;Choi, Sang-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2292-2297
    • /
    • 2008
  • Recently, a study on condensers for refrigerators has focused on new model which will cost less and will be more efficient. Some widely used condensers for domestic refrigerators are wire-and-tube type condenser, hot-wall type condenser, and spiral type condenser. Some companies which use the spiral type condenser at the moment try to develop a new type condenser which will cost less and will be as efficient as the spiral type. The new type condenser consists of a steel tube, steel plates and louver fins attached to the tube. The tube and the plate are bent into a single-passage serpentine shape.

  • PDF

Heat Transfer Module for Multi-Burner Water Tube Boiler: 0.5 t/h Class Model Simulation (다중버너 수관식 보일러를 위한 전열모듈의 열전달 특성: 0.5 t/h급 모형 수치해석)

  • Ahn, Joon;Kim, Jong-Jin;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.528-533
    • /
    • 2007
  • A finned tube type heat transfer module has been proposed for a multi-burner water tube boiler. Fins change their geometry along the streamwise direction to maximize the performance, which makes it difficult to apply conventional bulk analysis. The design program has been improved by updating data for every row of tubes along the flow. A numerical simulation has been also performed to evaluate the effect of inlet conditions and validated with experiment. The heat transfer of the first row has been underpredicted by the conventional Zhukauskas correlation, where the acceleration of the flow due to the blockage is not fully inflected. The fin tip temperature is also underpredicted by Bessel solution, because of the interaction with neighboring fins.

  • PDF

The Design of Analog-to-Digital Converter using 12-bit Pipeline BiCMOS (12-bit 파이프라인 BiCMOS를 사용한 A/D 변환기의 설계)

  • 김현호;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.2
    • /
    • pp.17-29
    • /
    • 2002
  • There is an increasing interest in high-performance A/D(Analog-to-Digital) converters for use in integrated analog and digital mixed processing systems. Pipeline A/D converter architectures coupled with BiCMOS process technology have the potential for realizing monolithic high-speed and high-accuracy A/D converters. In this paper, the design of 12bit pipeline BiCMOS A/D converter presented. A BiCMOS operational amplifier and comparator suitable for use in the pipeline A/D converter. Test/simulation results of the circuit blocks and the converter system are presented. The main features is low distortion track-and-hold with 0-300MHz input bandwidth, and a proprietary 12bit multi-stage quantizer. Measured value is DNL=${\pm}$0.30LSB, INL=${\pm}$0.52LSB, SNR=66dBFS and SFDR=74dBc at Fin=24.5MHz. Also Fabricated on 0.8um BiCMOS process.

  • PDF

Swimming Mechanics of Aquatic-Animals (수중동물의 헤엄침 역학)

  • Sohn, Myong-Hwan;Han, Cheol-Heui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.189-199
    • /
    • 2007
  • The present survey paper introduces the research history, characteristics of body and fin shapes, basic principles of various locomotions and propulsion-generation mechanism of aquatic animals in nature, which utilize unsteady flow through a noble mechanism that is different in paradigm from the propulsion generation mechanism of man-made marine vehicles, and so have excellent performance and efficiency. The authors hope that the present paper helps to activate the domestic research interest on the fields of swimming in nature, which is expected to provide great ideas for improvement and innovation of today's marine vehicles.

Development of the Dynamic Simulation Program of a Multi-Inverter Heat Pump under Frosting Conditions

  • Park Byung-Duck;Lee Joo-Dong;Chung Baik-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.113-122
    • /
    • 2004
  • In case of heat exchangers operating under frosting condition, the thermal resistance and the air-side pressure loss increase with a growth of frost layer. In this paper, a transient characteristic prediction model of the heat transfer for a multi-inverter heat pump with frosting on its surface was presented by taking into account the change of the fin efficiency due to the growth of the frost layer. This dynamic simulation program was developed for a basic air conditioning system composed of an evaporator, a condenser, a compressor, a linear electronic expansion valve, and a bypass circuit. The theoretical model was derived from measured heat transfer and mass transfer coefficients. We also considered that the heat transfer performance was only affected by the decrease of wind flow area. The calculated results were compared with the experimental results for frosting conditions.