• 제목/요약/키워드: Fin Performance

검색결과 572건 처리시간 0.03초

Experimental Study of Performance Characteristics of Various Fin Types for Fin-Tube Heat Exchanger

  • Youn, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.29-38
    • /
    • 2000
  • Air side heat transfer and pressure drop for f 9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65 mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7 mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power

  • PDF

루버핀-관 열교환기의 습조건에서의 열전달 및 마찰특성에 대한 실험 연구 (Heat Transfer and Friction Characteristics of Louver Fin and Tube Heat Exchangers under Wet Conditions)

  • 권영철;장근선
    • 공업화학
    • /
    • 제19권1호
    • /
    • pp.73-79
    • /
    • 2008
  • 본 연구에서는 핀-관 열교환기의 공기측 열전달, 마찰 그리고 물질특성을 조사하기 위하여 6종의 열교환기에 대하여 습조건에서 실험을 수행하였다. 실험에 사용된 핀은 루버형으로 핀피치, 관 열수 그리고 입구상대습도를 변화하였다. 루버핀-관 열교환기의 열전달계수와 마찰계수는 레이놀즈 수가 증가할수록 감소하였으며, 핀피치가 줄어들수록 열전달계수는 감소하였고 마찰계수는 증가하였다. 3열 열교환기의 열전달계수와 마찰계수의 핀피치 변화에 따른 영향은 2열 열교환기의 경우보다 덜 민감하였다. 그리고 유입공기의 상대습도에 대한 열전달계수와 마찰계수의 변화폭은 크지 않았다. 또한, 루버핀-관 열교환기의 물질전달계수는 핀피치가 감소할수록 줄어들었으나, 레이놀즈 수 변화에 따른 물질전달계수는 열전달계수와는 달리 관 열수에 따라 서로 다른 경향을 보였다. 유입공기의 상대습도가 높아질수록, 물질전달계수는 다소 줄어 들었다.

낮은 핀을 가진 수평관의 응축액 억류에 관한 연구 (A Study on the condensate Retention at Horizontal Integral-Fin tubes)

  • 한규일;조동현
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF

대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교 (Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins)

  • 강형석
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

A Review of Fin-and-Tube Heat Exchangers in Air-Conditioning Applications

  • Hu, Robert;Wan, Chi-Chuan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권3호
    • /
    • pp.85-100
    • /
    • 2007
  • This study presents a short overview of the researches in connection to the fin-and-tube heat exchangers with and without the influence of dehumidification. Contents of this review article include the data reduction method, performance data, updated correlations, and the influence of hydrophilic coating for various enhanced fin patterns. This study emphasizes on the experimental researches. Performance of both sensible cooling and dehumidifying conditions are reported in this review article.

원형 pin fin과 반원형 pin fin 사이의 성능 비교 (Comparison of Performance Between a Circular Pin Fin and a Half Circular Pin Fin)

  • 강형석
    • 산업기술연구
    • /
    • 제36권
    • /
    • pp.17-22
    • /
    • 2016
  • A circular pin fin (CPF) and a half circular pin fin (HCPF) are by using the one-dimensional analytic method. For these two fins, 90% of the maximum heat loss, Corresponding fin length for 90% of the maximum heat loss, fin effectiveness and fin efficiency are compared as functions of convection characteristic number and fin radius. Also, the ratio of heat loss from the HCPF to that from CPF listed with variation of fin length when the fin volumes are the same. One of the results shows that the efficiency of a CPF is larger than that of a HCPF while the effectiveness of a CPF is smaller than that of a HCPF when convection characteristic number, fin length and fin radius are the same.

  • PDF

자동차용 응축기의 휜 열전달 및 압력강하 특성 (Characteristics of Fin-Side Heat-Transfer and Pressure Drop in a Condenser for Automobile)

  • 곽경민;이홍열
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.152-158
    • /
    • 2004
  • An experimental study was performed to determine the fin-side heat transfer and pressure drop of a condenser for automobile. Five sample with different fin height and louver angle were tested, 9mm, 8mm, 7.5mm, 5.4mm and 4.5mm. Results are presented as plot of Colburn j-factor(or heat transfer coefficients) and friction factor(or pressure drop) against the Reynolds number(or inlet air velocity) based on louver pitch, in the range of 110 to 480. The results show that both heat transfer and pressure drop on the fin are mainly affected by the louver angle in a lower range of air velocity, but, by the fin height in a higher range of air velocity. The performance of 5.4mm fin is the highest, compared to other fin sample.

핀 형상에 따른 폐열회수용 핀-튜브 열교환기의 성능분석 (Performance Analysis of Fin-Tube Heat Exchangers with Various Fin Shapes for Waste Gas Heat Recovery)

  • 맹재훈;구병수;전용두;이금배
    • 설비공학논문집
    • /
    • 제23권9호
    • /
    • pp.627-632
    • /
    • 2011
  • As an innovative effort to secure economically viable heat recovery system, various fin shapes for industrial fin-tube heat exchangers have been studied for better performance. In this study, the waste gas heat recovery from four different fin shapes was experimentally performed for heat transfer rate and pressure drop. According to the tested results, the twist and wavy shape fins of rectangular type show the superior performance in terms of Goodness factor and jH/f factor ratio, whereas the circular spiral fin shows the inferior values. Experimental results shows good comparison with the numerical results with a slight discrepancy of 5%, which is quite resonable.

확대모델을 이용한 특성화된 핀형상의 열전달평가 (An Evaluation of Heat Transfer Characteristics of Individualized Fin Type Using Large Scale Model)

  • 윤점열;강희찬;이관수;김무환
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.166-175
    • /
    • 1996
  • In recent years, air-conditioning units designed with higher efficiency and more compactness are required due to emphasis on energy efficiency in home electrical appliances. This trend in the air-conditioning industries has accelerated the development of improved heat exchanger with a better performance in heat transfer aspects. In this study, experiments were performed to investigate the shape and configuration of fins affecting on the performance of the conventional fin-and-tube type heat exchanger equipped in a commercial air conditioners. The geometry similtude method was employed to measure the heat transfer coefficient and pressure drop. Experimental results show that this method is very useful to analyze the heat transfer characteristics of the fin-and-tube type heat exchanger. It is also found that the slit fin has better performance than the conventional fin type in the air conditioners. The present results indicate that heat transfer from the fin si influenced by the parameters such as the forming area of the slit fin, the type of interrupted surfaces like a louver or slit, slit patterns and slit raised direction, and it also affects the overall heat exchanger performance.

  • PDF

수동적으로 냉각되는 하이브리드 휜들의 열성능에 대한 수치적 연구 (Numerical study on the thermal performance of passively cooled hybrid fins)

  • 전문수;김경준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.816-821
    • /
    • 2013
  • 본 논문은 자연대류 상에서 수동적으로 냉각되는 다양한 하이브리드 휜들과 핀 휜의 열성능에 대한 수치연구결과를 보고한다. 연구된 하이브리드 휜들은 basic hybrid fin (BHF), hollow hybrid fin (HHF), solid hybrid fin (SHF) 이다. 다양한 방열율에 대한 HF들과 PF의 열성능을 조사하기 위해 CFD 휜 모델이 개발되었다. 휜들의 열성능은 각각의 휜에 대해 휜 베이스 면적에 대한 열전달계수, $h_a$와 질량에 대한 열전달계수, $h_m$ 을 정량화하여 분석되었다. 연구결과는 SHF의 $h_a$가 PF 보다 23% 더 큼을 보여주고, HHF의 $h_m$은 PF 보다 무려 140% 더 크며, HHF의 질량기반 성능, 즉 $h_m$은 BHF 보다 40% 더 우수함이 밝혀졌다.