• Title/Summary/Keyword: Filtration experiment

Search Result 202, Processing Time 0.017 seconds

The Effect of Application Levels of Slurry Composting and Bio-filtration Liquid Fertilizer on Soil Chemical Properties and Growth of Radish and Corn (총각무와 옥수수 재배시 SCB액비 시용수준이 토양화학성과 생육에 미치는 영향)

  • Kang, Seong-Soo;Kim, Min-Kyeong;Kwon, Soon-Ik;Kim, Myong-Suk;Yoon, Sung-Won;Ha, Sang-Gun;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1306-1313
    • /
    • 2011
  • A liquid fertilizer treated with slurry composting and biofiltration (SCB) process has been applied increasingly on agricultural field but the effects on the soil properties and crop production has not been throughly evaluated. This study was conducted to investigate the effect of the SCB application on soil chemical properties and the growth of radish and corn. SCB liquid fertilizer as a basal fertilization was treated with five levels based on $6kg\;10a^{-1}$ for radish and $10kg\;10a^{-1}$ for corn. The experimental design was the completely randomized block design with five levels and three replicates. Electrical conductivity (EC), $NO_3$-N, Exch. K and Exch. Na increased depending on the treatment levels of SCB. There were no changes in soil organic matter, Avail. $P_2O_5$, Exch. Ca and Exch. Mg. EC, $NO_3$-N and Exch. Na content decreased as precipitation increased. Especially, they decreased up to the initial condition before the treatment after the heavy rainy season in 2008. Although Exch. K decreased at the rainy season, they remained relatively higher content after the experiment on August, 2008. Fresh weight and the amount of N uptake of radish increased due to the levels of SCB, but corn did not present any significant increase. It is recommended that we need to decide the proper amount of SCB as well as the application method on the field to increase the productivity and decrease environmental stress. Additional experiments also need to clarify the effect of the trace element and heavy metal accumulations due to long term application of SCB.

Comparison Evaluation of Image Quality with Different Thickness of Aluminum added Filter using GATE Simulation in Digital Radiography (GATE 시뮬레이션을 사용한 알루미늄 부가필터 두께에 따른 Digital Radiography의 영상 화질 비교 평가)

  • Oh, Minju;Hong, Joo-Wan;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • In X-ray image, the role of filtration through the filter is to reduce the exposure of the patient by using photon which is useful in formation of the image, and at the same time, enhance the contrast of the image. During interaction between photon and object, low energy X-rays are absorbed from the site of a few cm of the first patient's tissue, and high energy X-rays are the one which form the image. Therefore, the radiation filter absorbs low energy X-ray in order to lower the exposure of the patient and improve the quality of the image. The purpose of this study is to compare the effect on the image quality by differences of added filter through simulation image and actual radiation image. For that purpose, we used Geant4 Application for Tomographic Emission (GATE) as a tool for Monte Carlo simulation. We set actual size, shape and material of Polymethylmethacrylate (PMMA) Phantom on GATE and differentiated the parameter of added filter. Also, we took image of PMMA phantom with same parameter of added filter by digital radiography (DR). Than we performed contrast-to-noise ratio (CNR) evaluation on both simulation image and actual DR image by Image J. Finally, we observed the effect on image quality due to different thickness of added filter, and compared two images' CNR evaluation's transitions of change. The result of this experiment showed decreasing in the progress of CNR on both DR and simulation image. It is ultimately caused by decreasing in contrast on image. In theory, contrast decrease with kVp increased. Given that condition, this study found out that filter makes not only decreasing total dose by absorbing low energy of X-ray, but also increasing average energy of X-ray.