• Title/Summary/Keyword: Filtering system

Search Result 2,272, Processing Time 0.025 seconds

An Approach to Credibility Enhancement of Automated Collaborative Filtering System through Accommodating User's Rating Behavior

  • Sung, Jang-Hwan;Park, Jong-Hun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.576-581
    • /
    • 2007
  • The purpose of this paper is to strengthen trust on the automated collaborative filtering system. Automated collaborative filtering system is quickly becoming a popular technique for recommendation system. This elaborative methodology contributes for reducing information overload and the result becomes index of users' preference. In addition, it can be applied to various industries in various fields. After it collaborative filtering system was developed, many researches are executed to enhance credibility and to apply in various fields. Among these diverse systems, collaborative filtering system which uses Pearson correlation coefficient is most common in many researches. In this paper, we proposed new process diagram of collaborative filtering algorithm and new factors which should improve the credibility of system. In addition, the effects and relationships are also tested.

  • PDF

Harmonic Mean Weight by Combining Content Based Filtering and Collaborative Filtering in a Recommender System (내용 기반 여과와 협력적 여과의 병합을 통한 추천 시스템에서 조화 평균 가중치)

  • 정경용;류중경;강운구;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.239-250
    • /
    • 2003
  • Recent recommender system user a method of combining collaborative filtering system and content based filtering system in order to slove the problem of the Sparsity and First-Rater in collaborative filtering system. In this paper, to make up for the prediction accuracy in hybrid Recommender system, the harmonic mean weight(CBCF_harmonic_mean) is used for calculating the user similarity weight. After setting up the threshold as 45 considering the performance of content based filtering, we apply significance weight of n/45 to user similarity weight. To estimate the performance of the proposed method, it if compared with that of combing both the existing collaborative filtering system and the content- based filtering system. As a result, it confirms that the suggested method is efficient at improving the prediction accuracy as solving problems of the exiting collaborative filtering system.

Performance Improvement of a Movie Recommendation System based on Personal Propensity and Secure Collaborative Filtering

  • Jeong, Woon-Hae;Kim, Se-Jun;Park, Doo-Soon;Kwak, Jin
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.157-172
    • /
    • 2013
  • There are many recommendation systems available to provide users with personalized services. Among them, the most frequently used in electronic commerce is 'collaborative filtering', which is a technique that provides a process of filtering customer information for the preparation of profiles and making recommendations of products that are expected to be preferred by other users, based on such information profiles. Collaborative filtering systems, however, have in their nature both technical issues such as sparsity, scalability, and transparency, as well as security issues in the collection of the information that becomes the basis for preparation of the profiles. In this paper, we suggest a movie recommendation system, based on the selection of optimal personal propensity variables and the utilization of a secure collaborating filtering system, in order to provide a solution to such sparsity and scalability issues. At the same time, we adopt 'push attack' principles to deal with the security vulnerability of collaborative filtering systems. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the selection of optimal personalization factors and the embodiment of a safe collaborative filtering system.

An Adaptive Filtering Technique for Vibration Reduction of a Rotational LOS Control System and Frequency Noise Reduction of an Imaging System (적응형 필터링 기법을 이용한 회전형 시선제어시스템의 진동 저감 및 영상 주파수노이즈 저감 기법)

  • Kim, Byeong-Hak;Kim, Min-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1014-1022
    • /
    • 2014
  • In mechatronic systems using electric signals to drive control systems, driving signals including the frequency band of the unwanted signals, such as resonant frequencies and noise frequencies, can affect the accuracy of the controlled system and can cause serious damage to the system due to the resonance phenomenon of the mechatronic system. An LOS (Line of Sight) control unit is used to automatically rotate the gimbal system with a video imaging system generally mounted on modern aerial vehicles. However, it still suffers from natural frequency variation problems due to variations of operational temperature. To prevent degradation in performance, this paper proposes an adaptive filtering technique based on real-time noise analysis and adaptive notch-filtering for LOS control systems, and verifies how our proposed method maintains the LOS stabilization performance. Additionally, this filtering technique can be applied to the image noise filtering of the video imaging system. It is designed to reduce image noises generated by switching circuits or power sources. The details of design procedures of the proposed filtering technique and the experiments for the performance verification are described in this paper.

Improved Spam Filter via Handling of Text Embedded Image E-mail

  • Youn, Seongwook;Cho, Hyun-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.401-407
    • /
    • 2015
  • The increase of image spam, a kind of spam in which the text message is embedded into attached image to defeat spam filtering technique, is a major problem of the current e-mail system. For nearly a decade, content based filtering using text classification or machine learning has been a major trend of anti-spam filtering system. Recently, spammers try to defeat anti-spam filter by many techniques. Text embedding into attached image is one of them. We proposed an ontology spam filters. However, the proposed system handles only text e-mail and the percentage of attached images is increasing sharply. The contribution of the paper is that we add image e-mail handling capability into the anti-spam filtering system keeping the advantages of the previous text based spam e-mail filtering system. Also, the proposed system gives a low false negative value, which means that user's valuable e-mail is rarely regarded as a spam e-mail.

A Study on Improving Efficiency of Recommendation System Using RFM (RFM을 활용한 추천시스템 효율화 연구)

  • Jeong, Sora;Jin, Seohoon
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • User-based collaborative filtering is a method of recommending an item to a user based on the preference of the neighbor users who have similar purchasing history to the target user. User-based collaborative filtering is based on the fact that users are strongly influenced by the opinions of other users with similar interests. Item-based collaborative filtering is a method of recommending an item by comparing the similarity of the user's previously preferred items. In this study, we create a recommendation model using user-based collaborative filtering and item-based collaborative filtering with consumer's consumption data. Collaborative filtering is performed by using RFM (recency, frequency, and monetary) technique with purchasing data to recommend items with high purchase potential. We compared the performance of the recommendation system with the purchase amount and the performance when applying the RFM method. The performance of recommendation system using RFM technique is better.

Reinforcement Learning Algorithm Based Hybrid Filtering Image Recommender System (강화 학습 알고리즘을 통한 하이브리드 필터링 이미지 추천 시스템)

  • Shen, Yan;Shin, Hak-Chul;Kim, Dae-Gi;Hong, Yo-Hoon;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2012
  • With the advance of internet technology and fast growing of data volume, it become very hard to find a demanding information from the huge amount of data. Recommender system can solve the delema by helping a user to find required information. This paper proposes a reinforcement learning based hybrid recommendation system to predict user's preference. The hybrid recommendation system combines the content based filtering and collaborate filtering, and the system was tested using 2000 images. We used mean abstract error(MAE) to compare the performance of the collaborative filtering, the content based filtering, the naive hybrid filtering, and the reinforcement learning algorithm based hybrid filtering methods. The experiment result shows that the performance of the proposed hybrid filtering performance based on reinforcement learning is superior to other methods.

A Study on Movies Recommendation System of Hybrid Filtering-Based (혼합 필터링 기반의 영화 추천 시스템에 관한 연구)

  • Jeong, In-Yong;Yang, Xitong;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2015
  • Recommendation system is filtering for users require appropriate information from increasing information. Recommendation system is provides the information based on user information or content that information entered in the original through process of filtering through the algorithm. Recommend system is problems with Cold-start, and Cold-start is not enough information in the occurrences for new users of recommend system in the new information to the user when recommend. Cold-start is should meet to resolve the user of information and item information. In this paper, Suggest for movie recommendation system on collaborative filtering techniques and content-based filtering techniques based to a hybrid of a hybrid filtering techniques to solve problems in cold-start.

A Study on a Stochastic Nonlinear System Control Using Neural Networks (신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구)

  • Seok, Jin-Wuk;Choi, Kyung-Sam;Cho, Seong-Won;Lee, Jong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-272
    • /
    • 2000
  • In this paper we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastcic approximation method it is regarded as a stochastic recursive filter algorithm. In addition we provide a filtering and control condition for a stochastic nonlinear system called the perfect filtering condition in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable and the proposed neural controller is more efficient than the conventional LQG controller and the canonical LQ-Neural controller.

  • PDF

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.602-609
    • /
    • 2007
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system

  • PDF