• Title/Summary/Keyword: Filter band

Search Result 1,650, Processing Time 0.026 seconds

An Algorithm of Optimal Design in Binary Transversal Filter (2진 횡단선 필터의 최적설계 알고리듬)

  • Lee, Kang-Ho;Choi, Jong-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 1989
  • In binary digital transmission system the band-limiting is required for the better transmission efficiency. But in the case of band-limiting the intersymbol-interference (ISI) usually takes place. In this paper, in an attempt to design band-limiting filter which has minimum ISI and maximum stop-band loss, first, making use of analog filter by combining Binary Transversal Filter (BTF) and analog filter (4th Butterworhfilter), we found the value that minimizes ISI phenomenon by getting step response of rectangular pulse resulting from BTF in time domain. Second, we found filter characteristic we want to in frequency domain for band-limiting and minimized the error. And then we obtained resistor value (Tap coefficient) in order to design algorithm for optimum filter. Also we showed the example of simulation in case we established the resistors with 3,5 and 7 respectively. With 7 resistors set, we identified that the ripple of about minus 30dB was taken place.

  • PDF

Wideband Bandstop filter Using Dual Spurline and Coupling Open Stubs (이중 스퍼라인과 커플링 오픈스터브를 이용한 광대역 대역저지 필터)

  • Lee, Hyun-Seung;Choi, Jee-Hwan;Kim, Choul-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • In this paper, we propose a wideband band-stop filter (BSF) in order to extend the stopband of the band-stop filter using a symmetric dual spurline and the coupled open stub. First, we know that the symmetric dual spurline structure is advantageous in widening the stopband, as compared to the asymmetric dual spurline structure. So we designed a band-stop filter that combines the electrically coupled open stub (ECOS) band-stop filter with a symmetric dual spurline. We can greatly extend the stopband, when it is combined with the dual spurline and electrically coupled open stub on a microstrip transmission line, without any size increment. The stopband of the proposed band-stop filter is extended by approximately 244% (rejection depth: -20 dB) compared with a band-stop filter without a dual spurline.

Signal processing algorithm for converting variable bandwidth in the multiple channel systems (다중채널 시스템에서 가변 대역폭 절환을 위한 신호처리 알고리즘)

  • Yoo, Jae-Ho;Kim, Hyeon-Su;Choi, Dong-Hyun;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • The algorithm of multiple channel signal processing requires the flexibility of variable frequency band, efficient allocation of transmission power, and flexible frequency band reallocation to satisfy various service types which requires different transmission rates and frequency band. There are three methods including per-channel approach, multiple tree approach, and block approach performing frequency band reallocation method by channelization and dechannelization in the multiple-channel signal. This paper proposes an improved per-channel approach for converting the frequency band of multiple carrier signals efficiently. The proposed algorithm performs decimation and interpolation using CIC(cascaded integrator comb filter), half-band filter, and FIR filter. In addition, it performs filtering of each sub-channel, and reallocates channel band through FIR low-pass filter in the multiple-channel signal. The computer simulation result shows that the perfect reconstruction of output signal and the flexible frequency band reallocation is performed efficiently by the proposed algorithm.

A Study on the Cascading Chebyshev Filter for Ripple Cancellation (리플저감을 위한 Chebyshev 필터 조합에 관한 연구)

  • Kang, Doo-Byung;Shin, Seung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.168-172
    • /
    • 2012
  • This paper is focusing on the comparison of different kinds of BPFs(Band Pass Filters) passing signals with a particular frequency band. According to the different classifications, features and target application systems, BPF has many types. Chebyshev filter which has a steep slope and a few ripples, and Butterworth filter which has no ripple but gentle slope are the most typical BPFs. The ideal filter is flat in the passband and the slope in the transition band is perpendicular. In this paper, we suggest the cascading Chebyshev BPF with the advantages of the Chebyshev filter and the Butterworth filter simultaneously to make a closest filter to an ideal filter. The proposing BPF is the tenth Chebyshev BPF cascading the fourth and the sixth, and it is designed as the tenth cascading Chebyshev BPF. To measure the performance of the designing filter, we have compared and analyzed the tenth Chebyshev filter with the tenth Butterworth filter. As a result, the tenth cascading Chebyshev BPF has decreased the ripple more than 1/4 [dB] in the passband. Finally, the output of the simulation showed the validity of the proposing cascading Chebyshev filter.

Quad-Band Bandpass Filter Using Quad-Mode Stub-loaded Resonators

  • Liu, Haiwen;Wang, Xiaomei;Wang, Yan;Li, Shen;Zhao, Yulong;Guan, Xuehui
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.690-693
    • /
    • 2014
  • Compact multi-band bandpass filters using quad-mode stub-loaded resonators are proposed in this letter. Firstly, a novel approach about the mode-splitting characteristics of the quadruple-mode resonator is investigated, which can provide dual-band behavior. Secondly, a quad-band filter is proposed and designed by cascading two quadruple-mode resonators; the upper one operates at 1.8/2.4 GHz (GSM- and WiMax-band) and the lower one at 1.57/2.1 GHz (GPS- and WCDMA-band). Finally, the proposed filters have been fabricated. Respectable agreement between simulation and measurement verifies the validity of this design methodology.

Design and Realization. of the Dual-mode Channel Filter and Group-Delay-and-Amplitude Equalizer for the Ka-band Satellite Transponder Subsystem

  • Sungtek Kahng;Uhm, Man-Seok;Lee, Seong-Pal
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.140-146
    • /
    • 2003
  • In this paper, the design of a channel filter and its group-delay-and-amplitude equalizer is carried out for the Ka-band satellite transponder subsystem. The 8th order dual-mode filter is employed for high selectivity around the band-edges with an elliptic-integral function response and has an in-line configuration. The 2-pole, reflection-type, group-delay equalizer is designed and manufactured to reduce the group-delay and amplitude variation, which can be large for such a high order filter. It is noted that in both the filter and equalizer, adopting the dual-mode coupling mechanism leads to less mass and volume. Through measurement, the performance of the realized group-delay-equalized filter is shown to meet the equipment requirements and to be appropriate for the satellite input multiplexer.

Design and Fabrication of CDMA Base Station SAW Band Pass Filter (CDMA 기지국용 SAW BAND PASS FILTER 의 설계 및 제작)

  • 김재천;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.31-34
    • /
    • 1998
  • CDMA base station SAW filter has been designed and fabricated successfully. Through the computer simulation, SAW filter is designed to have center frequency of 69.99MHz, ripples lower than 0.7dB and rejection level lower than 50dB. To obtain low noise band pass SAW filter, Input electrode has a apodization type and output electrode has a withdrawal type. For the fabrication of the SAW filter, Al thin film is deposited to the quartz substrates. The fabricated SAW filter has center frequency of 70.5MHz, ripples of 1dB and rejection level of 45dB.

  • PDF

Measurement of Short Reverberation Times at Low Frequencies Using Wavelet Filter Bank

  • Lee, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.511-520
    • /
    • 2003
  • In room acoustics, reverberation time is an important acoustic parameter. However it is often difficult to measure short reverberation times at low frequencies with a traditional band pass filter bank if the product of filter bandwidth (B) and reverberation time (T) is small. It it well known that the minimum permissible product of bandwidth and reverberation time of the traditional band pass filter is at least 16. This strict requirement makes it difficult to measure short reverberation times of an acoustic room at low frequencies exactly. In order to reduce this strict requirement, in the previous paper, the wavelet filter bank was developed and the minimum permissible product of bandwidth and reverberation time was replaced with 4. In the present paper it is demonstrated how the short reverberation times of an practical room at low frequencies are successfully measured by using the wavelet filter bank and the results are compared with the traditional method using a band past filer bank.

Design of an Ultra Wide Band Band-pass Filter with Open-Stubs (초광대역 개방형 스터브 대역통과 여파기의 설계)

  • Yoon, Ki-Cheol;Kang, Chul-Ho;Hong, Tae-Ui;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.37-43
    • /
    • 2013
  • In this paper, an UWB (Ultra Wide Band) band-pass filter with open stubs using SIR (Stepped Impedance Resonator) structure is presented. The proposed band pass filter (BPF) has SIR structure instead of open stubs for UWB application with low insertion loss. The bandwidth of the proposed BPF is 103 % at the center frequency of 5.8GHz and the insertion and return losses are 0.17dB and 13.1dB, respectively. Also, the entire size of the proposed band-pass filter is $21.6{\times}17.8mm^2$.

A 41dB Gain Control Range 6th-Order Band-Pass Receiver Front-End Using CMOS Switched FTI

  • Han, Seon-Ho;Nguyen, Hoai-Nam;Kim, Ki-Su;Park, Mi-Jeong;Yeo, Ik-Soo;Kim, Cheon-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.675-681
    • /
    • 2016
  • A 41dB gain control range $6^{th}$-order band-pass receiver front-end (RFE) using CMOS switched frequency translated impedance (FTI) is presented in a 40 nm CMOS technology. The RFE consists of a frequency tunable RF band-pass filter (BPF), IQ gm cells, and IQ TIAs. The RF BPF has wide gain control range preserving constant filter Q and pass band flatness due to proposed pre-distortion scheme. Also, the RF filter using CMOS switches in FTI blocks shows low clock leakage to signal nodes, and results in low common mode noise and stable operation. The baseband IQ signals are generated by combining baseband Gm cells which receives 8-phase signal outputs down-converted at last stage of FTIs in the RF BPF. The measured results of the RFE show 36.4 dB gain and 6.3 dB NF at maximum gain mode. The pass-band IIP3 and out-band IIP3@20 MHz offset are -10 dBm and +12.6 dBm at maximum gain mode, and +14 dBm and +20.5 dBm at minimum gain mode, respectively. With a 1.2 V power supply, the current consumption of the overall RFE is 40 mA at 500 MHz carrier frequency.