• Title/Summary/Keyword: Film model electrode

Search Result 52, Processing Time 0.026 seconds

Preparation and Characterization of Electrodeposited Cadmium and Lead thin Films from a Diluted Chloride Solution

  • Sulaymon, Abbas Hamid;Mohammed, Sawsan A.M.;Abbar, Ali Hussein
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.115-127
    • /
    • 2014
  • Cd-Pb thin films were electrodeposited from a diluted chloride solution using stainless steel rotating disc electrode. The linear sweep voltammograms of the single metallic ions show that electrodeposition of these ions was mass transfer control due to the plateau observed for different rotations at concentration (50 and 200 ppm). The voltammograms of binary system elucidate that electrodeposition process always start at cathodic potential located between the potential of individual metals. Currents transients measurements, anodic linear sweep voltammetry (ALSV) and atomic force microscopy (AFM) were used to characterize the electrocryatalization process and morphology of thin films. ALSV profiles show a differentiation for the dissolution process of individual metals and binary system. Two peaks of dissolution Cd-Pb film were observed for the binary system with different metal ion concentration ratios. The model of Scharifker and Hills was used to analyze the current transients and it revealed that Cd-Pb electrocrystalization processes at low concentration is governed by three-dimensional progressive nucleation controlled by diffusion, while at higher concentration starts as a progressive nucleation then switch to instantaneous nucleation process. AFM images reveal that Cd-Pb film electrodeposited at low concentration is more roughness than Cd-Pb film electrodeposited at high concentrated solution.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

Resonant Mode Analysis of Microwave Film Bulk Acoustic Wave Resonator using 3D Finite Element Method (3차원 유한 요소법을 이용한 초고주파 압전 박막 공진기의 공진 모드해석)

  • 정재호;송영민;이용현;이정희;고광식;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.18-26
    • /
    • 2001
  • In this paper, the resonant characteristics and modes of the film bulk acoustic wave resonator (FBAR) used in 1~2 GHz frequency region are analyzed by it's input impedance which was calculated by three dimensional finite element method formulated as eigenvalue problem using electro-mechanical wave equation and boundary condition. It was extracted that the resonant and the spurious characteristics considering the effects of electrode area and shape variation and unsymmetry of upper and lower electrode. Those effects couldn't be analyzed by on dimensional analysis, e.g. Mason equivalent model. The simulation result was confirmed by comparing with the simulation data from Mason model analysis and the measured data of the ZnO FBAR fabricated using micro-machining technique. Also, through the simulation of the area variations of FBAR, it was obtained that the optimum ratio of length and thickness is 20:1 and the minimum ratio is 5:1 to operate thickness vibration mode.

  • PDF

Improvement on the Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Amorphous Oxide Multilayer Source/Drain Electrodes

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.143-145
    • /
    • 2016
  • In order to find suitable source and drain (S/D) electrodes for amorphous InGaZnO thin film transistors (a-IGZO TFTs), the specific contact resistance of interface between the channel layers and various S/D electrodes, such as Ti/Au, a-IZO and multilayer of a-IGZO/Ag/a-IGZO, was investigated using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes had good performance and low contact resistance due to the homo-junction with channel layer. The stability was measured with different electrodes by a positive bias stress test. The result shows the a-IGZO TFTs with a-IGZO/Ag/a-IGZO electrodes were more stable than other devices.

Finite Difference Time Domain Analysis for Film Bulk Acoustic Wave Resonator used in Microwave Region (시간 영역 유한 차분법(FDTD)을 이용한 마이크로파 대역의 압전 박막 공진기 해석)

  • 송영민;정재호;이용현;이정희;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.489-492
    • /
    • 2000
  • Film Bulk Acoustic Wave Resonator(FBAR) used in microwave region was analyzed with Finite Difference Time-Domain Methods(FDTD) in this paper. FBAR have been analyzed with one dimensional Mason model analysis or Finite Element methods(FEM), but the first couldn't analyze effect of area variation and spurious characteristics, the second had difficulty in element separation because of thin electrode. So in this paper FBAR was analyzed by Finite Difference Time-Domain Methods and it's results were transformed to frequency domain using Discrete Fourier Transform.

  • PDF

Property Comparison of Ru-Zr Alloy Metal Gate Electrode on ZrO2 and SiO2 (ZrO2와 SiO2 절연막에 따른 Ru-Zr 금속 게이트 전극의 특성 비교)

  • Seo, Hyun-Sang;Lee, Jeong-Min;Son, Ki-Min;Hong, Shin-Nam;Lee, In-Gyu;Song, Yo-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.808-812
    • /
    • 2006
  • In this dissertation, Ru-Zr metal gate electrode deposited on two kinds of dielectric were formed for MOS capacitor. Sample co-sputtering method was used as a alloy deposition method. Various atomic composition was achieved when metal film was deposited by controlling sputtering power. To study the characteristics of metal gate electrode, C-V(capacitance-voltage) and I-V(current-voltage) measurements were performed. Work function and equivalent oxide thickness were extracted from C-V curves by using NCSU(North Carolina State University) quantum model. After the annealing at various temperature, thermal/chemical stability was verified by measuring the variation of effective oxide thickness and work function. This dissertation verified that Ru-Zr gate electrodes deposited on $SiO_{2}\;and\;ZrO_{2}$ have compatible work functions for NMOS at the specified atomic composition and this metal alloys are thermally stable. Ru-Zr metal gate electrode deposited on $SiO_{2}\;and\;ZrO_{2}$ exhibit low sheet resistance and this values were varied with temperature. Metal alloy deposited on two kinds of dielectric proposed in this dissertation will be used in company with high-k dielectric replacing polysilicon and will lead improvement of CMOS properties.

Nucleation and Growth of Bismuth Electrodeposition from Alkaline Electrolyte

  • Zhou, Longping;Dai, Yatang;Zhang, Huan;Jia, Yurong;Zhang, Jie;Li, Changxiong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1541-1546
    • /
    • 2012
  • The early stages of bismuth (Bi) electrodeposition on glass carbon electrode from alkaline electrolyte were studied by cyclic voltammetry, chronoamperometry, scanning electron microscopy, atomic force microscopy and X-ray diffraction. The CV analysis showed that the electrodeposition of Bi was determined to be quasireversible process with diffusion controlled. The current transients for Bi electrodeposition were analyzed according to the Scharifker-Hills model and the Heerman-Tarallo model. It can be concluded that the nucleation and growth mechanism was carried out under a 3D instantaneous nucleation, which was confirmed by SEM analysis. The kinetic growth parameters were obtained through a nonlinear fitting. In addition, the Bi film obtaining at -0.86 V for 1 hour was of compact and uniform surface with good smoothness, small roughness and a very high purity. The Bi film were indexed to rhombohedral crystal structure with preferred orientation of (0 1 2) planes to growth.

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

Effects of PbO on the Repassivation Kinetics of Alloy 690

  • Ahn, SeJin;Kwon, HyukSang;Lee, JaeHun;Park, YunWon;Kim, UhChul
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.131-139
    • /
    • 2004
  • Effects of PbO on the repassivation kinetics and characteristics of passive film of Alloy 690 were examined to elucidate the influences of PbO on the SCC resistance of that alloy. The repassivation kinetics of the alloy was analyzed in terms of the current density flowing from the scratch, i(t), as a function of the charge density that has flowed from the scratch, q(t). Repassivation on the scratched surface of the alloy occurred in two kinetically different processes; passive film initially nucleated and grew according to the place exchange model in which log i(t) is linearly proportional to q(t), and then grew according to the high field ion conduction model in which log i(t) is linearly proportional to 1/q(t) with a slope of cBV. The cBV is found to be a parameter representing repassivation rate and hence SCC susceptibility of the alloy. The lower the value of cBV, the faster the repassivation rate and the higher the SCC resistance of an alloy. Addition of PbO to pH 4 and 10 solutions increased the value of cBV of alloy 690, reflecting slower repassivation rate than without PbO. The change in the value of cBV was grater in pH 10 than in pH 4. The increase in SCC susceptibility of alloy 690 with the addition of PbO to solution was presumably due to the Cr-depletion in the outer parts of passive film of the alloy with an incorporation of Pb compounds in the film, which was revealed by Mott-Schottky, AES and XPS analyses.

V-t Characteristics and Survival Probability of Turn-to-Turn Models for HTS Transformer (고온초전도 변압기를 위한 턴간 모델의 V-t 특성 및 생존 확률)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van-Dung;Seok, Bok-Yeol;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.356-362
    • /
    • 2004
  • Using multi wrapped copper by polyimide film for HTS transformer, the breakdown and V-t characteristics of two type models for turn-to-turn, one is point contact model, the other is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on V-t characteristics under at voltage as well as breakdown voltage under ac and impulse voltage in $LN_2$ was carried. Also, survival analysis was performed according to the Kaplan-Meier method. The breakdown voltages for surface contact model are lower than that of the point contact model, because the contact area of surface contact model is wider than that of point contact model. At the same time, the shape parameter of the point contact model is a little bit larger than the of the surface contact model. The time to breakdown tn is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

  • PDF