• Title/Summary/Keyword: Film defect

Search Result 390, Processing Time 0.025 seconds

A Study of Vaporization Characteristics in the Methanol Spark Ignition Engine (메탄올 스파크 점화기관의 기화특성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 1994
  • The oil crises in 1973 and 1978 stimulated the alternative fuel research activities in many countries around the world. Among the alternative fuels, methanol is one of the highest potential fuels for transportation. Methanol has been considered for use as automotive fuel, but it has a defect of the great latent vaporization heat. Therefore, authors have made the fuel vaporizing device in order to eliminate the fuel film flow heating the mixture. This paper presents a study on the characteristics of vaporization, engine performance, and emission which result from using the fuel vaporizing device.

Fine Structural Change of PET Film Treated with Hydrazine Hydrate in Methanol (Hydrazine/Methanol 처리에 의한 PET Film의 미세구조의 변화)

  • Sung, Woo-Kyung;Cho, Hyun-Hok;Kim, Kyung-Hwan
    • Textile Coloration and Finishing
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 1990
  • In order to investigate the fine structural changes of poly (ethylene terephthalate) film by hydrazinolysis, PET was treated with hydrazine hydrate in methanol at $30^{\circ}C$ for various times. Initially apparent crystallite size and degree of orientation are increased and then, gradually decreased with hydrazinolysis. According to thermoluminescence measurement, trap site decreased by dissolution and then gradually increased with growth of defect in structure. Maximum peak temperature of tan and dynamic loss modulus E" upon hydrazinolysis shifted to the lower temperature in the progress of hydrazinolysis.ysis.

  • PDF

As ZnO2 Thin Film Manufacturing Time Increases, the Thin Film Particle Growth Plane and a Study on the Direction of Particle Growth (ZnO2 박막 제조 시간의 증가에 따라 박막 입자 성장면과 입자 성장 방향에 관한 연구)

  • Jung, Jin
    • Journal of Integrative Natural Science
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • A zinc oxide thin film was made by varying the deposition time on the silicon(110) substrate by using a radio frequency sputtering time of 60 minutes, 120 minutes and 180 minutes. As a result of analyzing the grain growth surface of the ZnO2 thin film using an X-ray diffraction apparatus, the directions of the main growth plane (002) and (103) planes of the thin film were significantly affected by the deposition time. As a result of observing the particle growth of the ZnO2 thin film through an electron scanning microscope, it was observed that in the initial stage of deposition of the ZnO2 thin film, an incubation time was required during which growth was stagnant, and then particle growth occurred again after a certain period of time. As a result of chemical analysis of the ZnO2 thin film, the increase in the deposition time did not change with the amount of oxygen in the ZnO2 thin film, but a change in the composition of Zn was observed, indicating that the deposition time of the thin film had an effect on the Zn component in the thin film.

A study on the formation of ITO by reactive DC cylindrical sputtering (DC 원통형 반응성 스파트링을 이용한 ITO 형성에 관한 연구)

  • 조정수;박정후;하홍주;곽병구;이우근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.35-38
    • /
    • 1995
  • Indium Tin Oxide(ITO) thin film is transparent to visible ray and conductive in electricity. It is seen that the samples made by the sputtering process have high transmission rate to visible ray and high adhesion , but the planar type magnetron sputtering process with is very well known in industrial region have a defect of partial erosion on the surface of target and a high loss of target and also since the substrate is positioned in plasma, the damage on thin film surface is caused by the reaction with plasma. In cylindrical magnetron sputtering system. it is known that the loss of target is little , the damage of thin film is very little and the adhesion of thin film with substrate is strong. In this study, we have made ITO thin film in the cylindrical DC magnetron system with the variable of substrate temperature , magnetic field, vacuum condution and the applied voltage. The general temperature for formation on ITO is asked at 350 $^{\circ}C$~400$^{\circ}C$ but we have made ITO is low temperature(80-150$^{\circ}C$) By studing electrical and optical properties of ITO thin fims made by varing several condition, we have searched the optimal condition for formation in the best ITO in low temperature.

  • PDF

Chemical Mechanical Polishing (CMP) Characteristics of BST Ferroelectric Film by Sol-Gel Method (졸겔법에 의해 제작된 강유전체 BST막의 기계.화학적인 연마 특성)

  • 서용진;박성우
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.128-132
    • /
    • 2004
  • The perovskite ferroelectric materials of the PZT, SBT and BST series will attract much attention for application to ULSI devices. Among these materials, the BST ($Ba_0.6$$Sr_0.4$/$TiO_3$) is widely considered the most promising for use as an insulator in the capacitors of DRAMS beyond 1 Gbit and high density FRAMS. Especially, BST thin films have a good thermal-chemical stability, insulating effect and variety of Phases. However, BST thin films have problems of the aging effect and mismatch between the BST thin film and electrode. Also, due to the high defect density and surface roughness at grain boundarys and in the grains, which degrades the device performances. In order to overcome these weakness, we first applied the chemical mechanical polishing (CMP) process to the polishing of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. BST ferroelectric film was fabricated by the sol-gel method. And then, we compared the surface characteristics before and after CMP process of BST films. We expect that our results will be useful promise of global planarization for FRAM application in the near future.

A Study on the Fabrication $Na_0.5$$K_0.5$$NbO_3$ Volatile Material Thin Film by Pulsed Laser Deposition and he Confirmation of C-axis Orientation by X-ray Diffraction (PLD 기법에 의한 $Na_0.5$$K_0.5$$NbO_3$ 휘발성 물질의 박막 제작 및 XRD에 의한 c축 배향성 확인에 관한 연구)

  • 최원석;김장용;장철순;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.269-273
    • /
    • 2001
  • W fabricated thin film using Na$_{0.5}$K$_{0.5}$NbO$_3$ volatile material by pulsed laser deposition (PLD) and studied characterization from EM, XRD, P-E. The density and scale of droplet, which is the defect of PLD, was investigated by SEM but large droplet was not found. The degree of assemble oriented C-axis measured with X-ray diffraction suggests that this film oriented C-axis achieved by $\theta$-2$\theta$ scan and rocking curves shows good self-assemble phenomenon, finally $\phi$-scan does that all of the four directions of the lattice in film equals to those of substrate. P-E hysteresis loop shows residual remnant polarization or saturation polarization value, but it is applicable to memories.ies.

  • PDF

Liquid Crystal Alignment Effects by UV Alignment Method on a Diamond-Like-Carbon Thin Film Surface (Diamond-Like-Carbon 박막표면에 UV 배향법을 이용한 액정 배향 효과)

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Hahn, Eun-Joo;Paek, Seung-Kwon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.526-529
    • /
    • 2002
  • We studied the nematic liquid crystal (NLC) aligning capabilities by the UV alignment method on a diamond like carbon (DLC) thin film surface. A good LC alignment by UV exposure on the DLC thin film surface at $200\AA$ of layer thickness was achieved. Also, a good LC alignment by the UV alignment method on the DLC thin film surface was observed at annealing temperature of $180^{\circ}C$. However, the alignment defect of the NLC was observed above annealing temperature of $200^{\circ}C$. Consequently, the good thermal stability of LC alignment by the UV alignment method on the DLC thin film surface can be achieved.

  • PDF

Growth of Polycrystalline 3C-SiC Thin Films using HMDS Single Precursor (HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성장)

  • Chug, Gwiy-Sang;Kim, Kang-San;Han, Ki-Bong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.156-161
    • /
    • 2007
  • This paper describes the characteristics of polycrystalline ${\beta}$ or 3C (cubic)-SiC (silicon carbide) thin films heteroepitaxailly grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC film was deposited by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane: $Si_{2}(CH_{3}_{6})$ single precursor. The deposition was performed under various conditions to determine the optimized growth conditions. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_{2}$ were measured by SEM (scanning electron microscope). Finally, depth profiling was invesigated by GDS (glow discharge spectrometer) for component ratios analysis of Si and C according to the grown 3C-SiC film thickness. From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therfore, the poly 3C-SiC thin film is suitable for extreme environment, Bio and RF MEMS applications in conjunction with Si micromaching.

Research Trend of Oxide Magnetic Films with Atomically Controlled Pulsed Laser Deposition (원자층 제어 PLD를 이용한 산화물 자성 박막 연구의 동향)

  • Kim, Bong-Ju;Kim, Bog-G.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.147-156
    • /
    • 2012
  • Recently, there have been considerable interests in various thin film growth techniques with atomically controllable thickness. Among them, atomically controlled pulsed laser deposition (PLD) technique is quite popular. We have developed advanced thin film growth technique using PLD and Reflection high energy electron diffraction (RHEED). Using the technique, the growth of oxide thin films with the precisely controllable thickness has been demonstrated. In addition, our technique can be applied to high quality thin film growth with minimal defect and bulk chemical composition. In this paper, our recent progresses as well as the current research trend on oxide thin films will be summarized.

Investigation of the Alignment Phenomena on the a-C:H Thin Films by PECVD System using Ion-beam Alignment Method

  • Park, Chang-Joon;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Kyung-Chan;Baik, Hong-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.15-18
    • /
    • 2004
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a-C:H thin film by plasma enhanced chemical vapor deposition (PECVD) system for 30 sec under 30W rf power at a gas pressure of 1.4*10$\^$-1/ torr. A high pretilt angle of about 5 by ion beam exposure on the a-C:H thin film surface was measured. A good LC alignment by the ion beam alignment method on the a-C:H thin film surface was observed at annealing temperature of 250$^{\circ}C$, and the alignment defect of NLC was observed above annealing temperature of 300$^{\circ}C$. Consequently, the high LC pretilt angle and the good thermal stability of LC alignment by the ion beam alignment method on the a-C:H thin film by PECVD method as working gas at 30W rf bias condition can be achieved.