• Title/Summary/Keyword: Film Cooling Method

Search Result 118, Processing Time 0.027 seconds

Optimum Design of a Liquid Film Thickness Measurement Device Using Electric Conductance for Impingement Liquid Film (충돌 액막 분석을 위한 전기전도 액막 두께 측정장치 최적설계)

  • Lee, Hyeongwon;Lee, Hyunchang;Kim, Taesung;Ahn, Kyubok;Yoon, Youngbin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.386-391
    • /
    • 2018
  • To analyze the film cooling in a liquid rocket engine, it is necessary to understand the characteristics of the wall-impingement liquid film. We designed an optimal two-dimensional device for measuring the thickness of the liquid film thickness. This device quantitatively measures the liquid-film thickness distribution. In previous liquid-film thickness measuring devices, the liquid film was formed over the entire area of the sensor. However, its formation depended on injection conditions. To compensate for this, optimal resistors are selected. Additionally, saturation variations with partial saturation are analyzed. Furthermore, calibration using the enhanced plate method is conducted with improvements in spatial resolution. The device designed here can be used to analyze the properties of an impingement liquid film with a slit injector. This study can be used for film-cooling analysis in liquid rocket engines.

Heat Transfer on Slot Film Cooling for Convergent Nozzle (축소노즐내 슬롯 막냉각에서의 열전달 특성)

  • 조용일;유만선;정학재;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 2001
  • A study has been conducted to observe the slot film cooling effect on a convergent nozzle wall. The slot film cooling is used to protect the nozzle wall from the hot combusted gas by the coolant injected from the slot around the inner wall of the nozzle. The film cooling effectiveness and the heat transfer to the nozzle wall are influenced significantly by the blowing ratio of the coolant to the main flow and those are also influenced by the shape of the slot and the flow acceleration in the nozzle. In the present study, the heat transfer for the various blowing ratios has been performed by the experimental method and the results are compared with the results computed by the empirical formula. The numerical method has been conducted to compare the film cooling effectiveness of the convergent nozzle with that of the cylinder. For the relatively low blowing ratio, the cooling effectiveness increases sharply as the blowing ratio increases, and the increasing rate slows down for the high blowing ratio.

  • PDF

A Numerical Study on the Cooling Characteristics of Seeker Windows for Selecting Efficient Cooling Method (효율적인 냉각 방식 선정을 위한 탐색창 냉각 특성 해석 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.246-254
    • /
    • 2017
  • In this paper, cooling characteristics of seeker windows were examined using the Sinda-Fluint software. Various cooling methods were considered to satisfy the limit temperature of the cooled seeker window which would be exposed to excessive aerodynamic heating conditions by varying coolant type and mass flow rate of coolant. Due to the enhanced heat transfer between the coolant and the seeker window, internally cooled seeker window which uses liquid coolant showed lowered temperature distribution in the window compared to internally cooled seeker window which uses gas coolant. External film cooled seeker window also showed good cooling characteristics because it reduces the convective heat flux to the seeker window fundamentally. It was also confirmed that the temperature and the temperature gradient of seeker windows were significantly reduced for the cases which use external film cooling additionally to the gas and liquid cooled seeker window.

Desgin Method of the Quartz Crystal Thickness Monitor and its Characteristics (수정 진동자를 이용한 박막두께 감시 장치의 제작과 특성)

  • 서용운;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.719-723
    • /
    • 1987
  • This paper shows the design method and the experimental results of the thin film thickeness monitor. The thin film thickness monitor uses 6 MHz quartz crystal in sensor and cooling system for the fine operation. The thin film thickness are measured by the digital frequrency counter.

  • PDF

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee K. Y.;Kim H. M.;Han Y. M.;Lee S. Y.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

A Design of Thin Film Thermoelectric Cooler for Chip-on-Board(COB) Assembly (박막형 열전 소자를 이용한 Chip-on-Board(COB) 냉각 장치의 설계)

  • Yoo, Jung-Ho;Lee, Hyun-Ju;Kim, Nam-Jae;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1615-1620
    • /
    • 2010
  • A thin film thermoelectric cooler for COB direct assembly was proposed and the COB cooler structure was modeled by electrical equivalent circuit by using SPICE model of thermoelectric devices. The embedded cooler attached between the die chip and metal plate can offer the possibility of thin film active cooling for the COB direct assembly. We proposed a driving method of TEC by using pulse width modulation technique. The optimum power to the TEC is simulated by using a SPICE model of thermoelectric device and passive components representing thermal resistance and capacitance. The measured and simulated results offer the possibility of thin film active cooling for the COB direct assembly.

NUMERICAL STUDY OF TURBINE BLADE COOLING TECHNIQUES (터빈 블레이드 냉각시스템에 관한 수치해석적 연구)

  • Kim, K.Y.;Lee, K.D.;Moon, M.A.;Heo, M.W.;Kim, H.M.;Kim, J.H.;Husain, A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.530-533
    • /
    • 2010
  • This paper presents numerical analysis and design optimization of various turbine blade cooling techniques with three-dimensional Reynolds-averaged Navier-Stokes(RANS) analysis. The fluid flow and heat transfer have been performed using ANSYS-CFX 11.0. A fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness with the radial basis neural network method. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. The impingement jet cooling has been performed to investigate heat transfer characteristic with geometry variables. Distance between jet nozzle exit and impingement plate, inclination of nozzle and aspect ratio of nozzle hole are considered as geometry variables. The area averaged Nusselt number is evaluated each geometry variables. A rotating rectangular channel with staggered array pin-fins has been investigated to increase heat transfer performance ad to decrease friction loss using KRG modeling. Two non-dimensional variables, the ratio of the eight diameter of the pin-fins and ratio of the spacing between the pin-fins to diameter of the pin-fins selected as design variables. A rotating rectangular channel with staggered dimples on opposite walls are formulated numerically to enhance heat transfer performance. The ratio of the dimple depth and dimple diameter are selected as geometry variables.

  • PDF

Fabrication and Characterization of Thermoelectric Thick Film by Using Bi-Te-Sb Powders

  • Yu, Ji-Hun;Bae, Seung-Chul;Ha, Gook-Hyun;Kim, Ook-Jung;Lee, Gil-Gun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.430-431
    • /
    • 2006
  • Thermoelectric thick film was fabricated by screen printing process with using p-type Bi-Te-Sb powders. The powder was synthesized by melting, milling and sintering process and hydrogen reduced to enhance the thermoelectric property. The thick film of Bi-Te-Sb powder was fabricated by screen printing method and baked at the optimized conditions. The thermal conductivity, the electrical resistivity and Seeback coefficient of thick film were measured and the thermoelectric performance was analyzed in terms of film characteristics and its microstructure. Finally, the feasibility of thermoelectric thick film into micro cooling device on CPU chip was discussed in this study.

  • PDF

Multi-objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm

  • Lee, Ki-Don;Husain, Afzal;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.150-159
    • /
    • 2010
  • Laidback fan shaped film-cooling hole is formulated numerically and optimized with the help of three-dimensional numerical analysis, surrogate methods, and the multi-objective evolutionary algorithm. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by four geometric design variables, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole, to maximize the film-cooling effectiveness compromising with the aerodynamic loss. The objective function values are numerically evaluated through Reynolds- averaged Navier-Stokes analysis at the designs that are selected through the Latin hypercube sampling method. Using these numerical simulation results, the Response Surface Approximation model are constructed for each objective function and a hybrid multi-objective evolutionary algorithm is applied to obtain the Pareto optimal front. The clustered points from Pareto optimal front were evaluated by flow analysis. These designs give enhanced objective function values in comparison with the experimental designs.

Specific Impulse Variation of a Liquid Rocket Engine by Film Cooling (막냉각에 의한 액체로켓엔진의 비추력 변화)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • An analysis has been performed on the specific impulse for a liquid rocket engine of gas generator cycle. The present analysis method has been validated through the comparison of the optimal specific impulse for the 300t thrust conceptual engine against the published data. The engine specific impulse can be increased by applying film coolant decreasing the fuel pump head for regenerative cooling despite the decrease of specific impulse of the combustion chamber when the film coolant participates combustion more than the critical amount. The improved condition shows that higher combustion chamber pressure is achieved with less fuel pump head rise by additional film cooling.

  • PDF