• Title/Summary/Keyword: Film Boiling Heat Flux

Search Result 53, Processing Time 0.023 seconds

A Study on Cooling of Hot Steel Surface by Water-Air Mixed Spray(I) -The Effect of Air Mass Flux on Film Boiling Heat Transfer- (물-공기 혼합분무에 의한 고온 강판 냉각에 대한 연구 (I) -막비등 열전달에 대한 공기질량유속의 영향-)

  • Lee, Pil-Jong;Jin, Sung-Tae;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.247-255
    • /
    • 2004
  • The cooling characteristic of water-air mixed spray for high water mass flux is not well defined, compared to that of highly pressurized spray. A series of research program was planned to develop the boiling correlation for whole temperature range in case of water-air mixed spray with high water mass flux. The cooling experiments of hot steel surface with initial temperature of 820$^{\circ}C$ were conducted in unsteady state with relatively high water mass flux. A computer program was developed to calculate the heat flux inversely from measured data by three inserted thermocouples. Finally the effects of water and air mass flux on the averaged film boiling heat flux and wetting temperature were studied. In this 1st report, it is found that the boiling curve was similar to that of highly pressurized spray and the decreased slope of heat flux in film boiling region with respect to surface temperature became steep by increasing air mass flux. Also it is shown that, by increasing air mass flux, the averaged heat flux in film boiling region was increased, and then saturated and the wetting temperature was increased, and then decreased. Finally when the heat flux in film boiling region is compared with that of highly pressurized spray, it is known that the cooling is improved by introducing air up to 60%.

An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet (충돌수분류의 천이 및 막비등열전달에 관한 연구)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF

A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes (수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-517
    • /
    • 1995
  • A mechanistic model for forced convective transition boiling has been developed to predict transition boiling heat flux realistically. This model is based on a postulated multi­stage boiling process occurring during the passage time of an elongated vapor blanket specified at a critical heat flux condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling. The total heat transfer rate during the transition boiling is the sum of the heat transfer rates after the DNB weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. From these comparisons, it can be seen that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are nil predicted at low qualities/high pressures near 10 bar.

  • PDF

Thin Film Evaporation on Horizontal Plain Tubes (수평 평활관 외측의 액막 증발에 관한 연구)

  • Kim, J.O.;Kim, N.H.;Choi, K.K.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 1998
  • In this study, thin film evaporation of water on a horizontal plain tube is experimentally investigated. At a high heat flux, boiling of water is noticed inside the film. Once boiling occurs, evaporation heat transfer coefficient increases as the heat flux increases. In the non-boiling region, however, the heat transfer coefficient remains uniform irrespective of the heat flux. In this region, the heat transfer coefficient increases as the film flow rate increases. Comparison with existing correlations is also provided.

  • PDF

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

An Experimental visualization of the Pool Boiling Heat Transfer on the Inclined square surface (경사진 가열면에서의 수조비등에 대한 가시화 연구)

  • Kim, J.K.;Song, J.H.;Kim, S.B.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.63-68
    • /
    • 2001
  • An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux(CHF) on a 70mm square surface which is inclined at $180^{\circ}$(upward), $90^{\circ}, \;45^{\circ}$. The heater block made of copper with cartridge heaters is submerged in a water tank with windows for visualization. As the heat flux increases from $100kW/m^2$ to $1.1MW/m^2$, the heat transfer regime migrates from the nucleate boiling to film boiling and results in a rapid heat up of the heater block. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux, is visualized by using a digital camcorder with $512{\times}512$ pixel size at 30fps.

  • PDF

Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling (액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구)

  • Yun, Seung-Min;Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.

Film Boiling Heat Transfer Characteristics in Liquid-Liquid System (액체,액체계의 막비등열전달 특성)

  • 김병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • Film boiling heat transfer characteristics in liquid-liquid systems are studied experimentally. Liquid gallium as a heating liquid, n-pentane, freon-113, and ethanol are used as boiling liquids. In gallium-n-pentane and gallium-freon-113 systems the minimum film boiling point occurred at higher temperature than those observed in copper-boiling liquid systems. However MFB point occurred almost at the same temperature for the case of ethanol. This difference are due to the effects of contact angle and interfacial agitations in gallium-boiling liquid systems. Film boiling heat transfer rate, for the gallium-boiling liquid systems considered in this work, found to be approximately 10% higher than those in copper-boiling liquid systems, whose main cause is believed to be gallium-boiling liquid interfacial agitations affected by the density ratio between gallium and boiling liquid.

Experimental Study on Film Boiling Heat Transfer of Spray Cooling for Inclined heat transfer Surface (경사면에서의 분무냉각 막비등 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The film boiling heat transfer was experimentally investigated for the water sprays impacting on an inclined hot surface. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made for different inclination angles of $\theta=0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$. The experimental results show that, in the downstream region of the inclined hot surface, increasing the inclination angle increases the local heat flux slowly because of increasing the number of rebound droplets. However, the inclination angle of heat transfer surface had no remarkable effect on the local heat flux of spray cooling under the present test conditions.

Film Boiling Heat Transfer from Relatively Large Diameter Downward-facing Hemispheres

  • Kim Chan Soo;Suh Kune Y.;Park Goon Cherl;Lee Un Chul;Yoon Ho Jun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.274-285
    • /
    • 2003
  • Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Loop for Transient Analysis). Two test sections are made of copper to maintain Bi below 0.1. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of both the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the two test sections. The measured heat transfer coefficients for the test section with diameter 120 mm lie within the bounding values from the laminar film boiling analysis, while those for diameter 294 mm are found to be greater than the numerical results on account of the Helmholtz instability. There is little difference observed between the film boiling heat transfer coefficients measured from the two test sections. In addition, the higher thermal conductivity of copper results in the higher minimum heat flux in the tests. For the test section of diameter 120 mm, the Leidenfrost point is lower than that for the test section of diameter 294 mm. Destabilization of film boiling propagates radially inward for the 294 mm test section versus radially outward for the 120 mm Test Section.