• Title/Summary/Keyword: Film Antenna

Search Result 81, Processing Time 0.029 seconds

The Electrical Properties of Mo-doped BiNbO4 Ceramic Thick Film Monopole Antenna (Mo을 치환한 BiNbO4 세라믹 후막 모노폴 안테나의 전기적 특성)

  • 서원경;허대영;최문석;안성훈;정천석;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.987-993
    • /
    • 2003
  • We fabricated thick film monopole antennas using Mo-doped BiNbO$_4$ ceramics and investigated their electrical properties as a function of the Mo-doping concentration. Compared with undoped BiNbO$_4$ ceramics, 10 at.% Mo-doping improved microwave dielectric properties of ceramics by increased sintered density as well as decreased space charge density. Further increase in the Mo-doping concentration caused formation of Bi$_2$MoO$_{6}$ phases, resulting in deterioration of the microwave characteristics. The gain and bandwidth of the ceramic monopole antenna were also greatly affected by the Mo-doping concentration. When Mo-doping concentration was 10 at.%, highest gain of -0.7dBi with lowest bandwidth of 30% at 2.3GHz was obtained.

Transparent Monopole Antenna on the Front Glass of an Automobile for FM Band (자동차 전면 글래스용 FM 대역 투명 모노폴 안테나)

  • Lee, Juhyung;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.477-483
    • /
    • 2018
  • A transparent antenna designed on the front glass of an automobile operating in the FM broadcast band(88~108 MHz) is proposed. A transparent antenna designed on the front glass of the automobile to avoid space limitation is typically positioned as a roof-mounted shark-fin antenna. An antenna designed on the front glass can reasonably solve the problems of low reception sensitivity and radiated interference from antennas for other service bands. The front glass has a unique closed-line structure, and this structure causes the surface current to flow to the front glass's surroundings; thus, the first resonance is caused before the broadcast band. Through the use of this closed-line structure, the surface current distribution is controlled, and an antenna for which the first resonance is operating in the frequency-modulated(FM) band can be designed. Moreover, the use of a micro-metal-mesh film that is a transparent electrode, suitable for designing a radio frequency device, enables the antenna to minimize visual perception through its transparency. The measured reflection coefficient($S_{11}$) of the antenna is less than -6 dB, and the average peak gain is -0.9 dB in the FM band. Experiments show that the transparent antenna on the front glass offers both the space and design freedom required to develop future automotive antennas.

77-GHz Slot Array Antenna Using PCB and ACF (PCB와 ACF를 이용한 77 GHz 슬롯 배열 안테나)

  • Yoon, Pyoung-Hwa;Kwon, Oh-Yun;Song, Reem;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.752-757
    • /
    • 2018
  • This study presents the performance evaluation results of a 77-GHz waveguide slot array antenna that was fabricated by attaching a patterned printed circuit board(PCB) on a metal block. The 77-GHz waveguide was divided into a top plate and a bottom structure. The top plate was fabricated using a patterned PCB that can implement a fine slot at low cost. The top cover was then bonded to the bottom metal structure with a waveguide trough using anisotropic conductive film. For evaluating the antenna performance, a $1{\times}16$ slot array antenna was fabricated using our proposed method and the gain and pattern were measured and compared with the simulation results. Though the measurement results demonstrate a reduction in gain of around 2.3~3.5 dB compared to the simulation results assuming ideal bonding conditions, the pattern hardly changed and the slot antenna with a gain of approximately 17 dBi at 77 GHz can be easily manufactured at a low cost using the proposed method.

HTS Broadband-Array Antenna for Satellite Communication

  • 정동철
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.178-182
    • /
    • 2002
  • Superconducting four-element patch array antenna was designed and fabricated using $high-T_{c}$ superconducting (HTS) thin film. The array antenna has single-feed circularly polarization and a resonance frequency of 11.85 GHz fur satellite communication system. To fabricate this antenna $YBa_2$$Cu_3$$O_{7-x}$(YBCO) superconducting thin films were deposited using rf-magnetron sputtering technique. Sequential rotation technique based on radiation elements($0^{\circ}$ , $90^{\circ}$, 1$80^{\circ}$, $270^{\circ}$ phase delay) was utilized to achieve circularly polarization. Simulated and measured results, the analysis on resonant frequency(fr), return loss, and bandwidth are presented. The results show that 10 dB return loss bandwidth of the array antenna is 11.04 GHz~12.59 GHz (13.15%) and 3dB axial ratio bandwidth is 11.42~12.52 GHz (9.2%).).).

  • PDF

Study on Broadband HTS Antenna Array for Satellite Communication (위성통신용 광대역 고온초전도 배열 안테나에 관한 연구)

  • 정동철;윤창훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.770-775
    • /
    • 2004
  • Although $High-T_c $superconducting HTS antennas have high efficiency and high gain, narrow bandwidth due to the high Q is the major limitation for application of satellite communication and mobile communication. Defining bandwidth as the frequency range over which standing wave ratio (SWR) is 2:1 or less, HTS antenna bandwidths are typically less than 1 %. Thus considerable effort has been focused on developing HTS antennas for broadband operation. In this work the HTS antenna array, using the bipin antenna which consisted of two triangle-radiation patches, was designed and fabricated using a ${YBa}_2{Cu}_3{O}_7x (YBCO)$ superconducting thin film on a MgO substrate for broadband operation. Also gold antennas with the same dimension as our HTS antennas were fabricated on the MgO substrate for the comparison. Experimental results for both antennas were reported in terms of radiation patterns, return losses, bandwidths and other various characteristics. The center frequency of HTS antennas was 20.28 GHz and the bandwidth obtained was significant 10 %.

Design of Multilayer Composite-Antenna-Structures Considering Adhesive (접착필름의 영향을 고려한 다층 복합재료 안테나 구조 설계)

  • Kim, D.S.;Park, H.C.;Park, W.S.;Hwang, W.
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.27-31
    • /
    • 2007
  • "Structural surface becomes an antenna." This term, CAS, indicates antenna embedding in structural surfaces. The CAS is composed of several composite laminates and Nomex honeycombs, and microstrip antenna elements are inserted between layers with designed configurations. Constituent materials are selected considering electrical contributions as well as mechanical performances. Antenna design with adhesive films are impossible because of their thin and rough distributions between honeycomb and substrate. Therefore, adhesive effects on antenna performances in CAS are experimentally investigated, CAS with targeted impedance and radiation characteristics are designed considering adhesive effects. multilayer

High Tc Superconducting Microstrip Patch antenna ; Characterization of Superconducting Antenna using Non-Radiating Edge Feeding Technique (고온 초전도 마이크로스트립 패치 안테나; 비방사면 급전방식을 이용한 초전도 안테나 특성)

  • Chung, Dong-Chul;Park, Sung-Jin;Hwang, Jong-Sun;Park, Jong-Kwang;Han, Byoung-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.375-381
    • /
    • 2000
  • In this paper, we described the characterization of High-Tc Superconducting(HTS) microstrip antenna using non-radiating edge feeding technique and reported the microwave properties of HTS antennas with temperature. To do this, we prepared the $YBa_2Cu_3O_{7-x}$ superconducting thin film on MgO substrate using pulse-laser deposition techniques. The HTS microstrip antenna using non-radiating feeding technique was fabricated using chemical wet-etching. Then it was compared with identical antenna patterned with evaporated gold. The diverse measured results have been reported in terms of the input impedance, resonant frequency and return loss. In additional, at around the critical temperature, the effect of kinetic inductance which affect the resonant characteristic of the HTS microstrip antenna was reported.

  • PDF

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Terahertz Transmission Imaging with Antenna-Coupled Bolometer Sensor (안테나 결합형 볼로미터 방식 테라헤르츠 센서를 이용한 이차원 주사 방식의 투과형 테라헤르츠 영상 취득에 관한 연구)

  • Lee, Kyoung Il;Lim, Byung Jik;Won, Jongsuk;Hong, Sung Min;Park, Jae Hyoun;Lee, Dae Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.311-316
    • /
    • 2018
  • An antenna-coupled bolometer-type terahertz sensor was designed, fabricated, evaluated, and utilized to obtain terahertz transmission images. The sensor consists of a thin film bowtie antenna that resonates accordingly in response to an incident terahertz beam, a heater that converts the applied current in the antenna into heat, and a microbolometer that converts the rise in temperature into a change in resistance. The device is fabricated by a bulk micromachining process on a 4-inch silicon wafer. The fabricated sensor chip has a size of $2{\times}2mm$ and an active area of $0.1{\times}0.1mm^2$. The temperature coefficient of resistance (TCR) of the bolometer film (VOx) is 2.0%, which is acceptable for bolometer applications. The output sensor signal is proportional to the power of the incident terahertz beam. Transmission images were obtained with a 2-axis scanning imaging system that contained the sensor. The small active area of the sensor will enable the development of highly sensitive focal plane array sensors in terahertz imaging cameras in the future.

Fabrication and Characterization of Miniaturized HTS Microstrip Antennas Using "H"-type Resonator (H 형태 공진기를 이용한 소형화된 HTS 안테나의 제작 및 특성 해석)

  • 정동철;윤창훈;황종선;최창주
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.282-287
    • /
    • 2003
  • ″H″ type resonator has the advantage for the miniaturization of high-T7 superconducting (HTS) microstrip antenna in comparison with the conventional microstrip antenna such as rectangular type or circular type. In this paper we designed miniaturized HTS antennas using this "H"-type resonator and reported the characteristics of our antennas including return loss, bandwidth, radiation patterns, efficiency and so on. To fabricate the "H" type antenna, HTS YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) thin films were deposited on MgO substrates using rf-magnetron sputtering. For comparison between normal conducting antennas and superconducting antennas, the gold antennas with the same dimension were also fabricated. An aperture coupling was used for impedance matching between 50 $\Omega$ feed line and HTS radiating patch. The ″H" type superconducting antenna showed the performance of 1.38 in SWR, 26 % in efficiency, and 13.8 dB in the return loss superior to the normal conducting counterpart.