• Title/Summary/Keyword: Filling Material

Search Result 731, Processing Time 0.028 seconds

The Manufacturing Technique of Rapid Products using Filling Process (충진공정을 이용한 쾌속시작품 제작 기술)

  • 신보성;최두선;이응숙;이종현;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.767-770
    • /
    • 2000
  • In order to reduce lean-time and cost, recently the technology of Rapid Prototyping and Manufacturing(PR/M) has been used widely. So various RP/M methods have been developed and these systems commercialized several years ago. The machining process is one of these methods. It also offers advantages such as precision and versatility. But there are some considerations during machining. The most important problem among them is the fixturing. So we have to overcome the limitation because the fixturing time is depend on the complexity of geometry to be machined. In this paper, we have developed the fixturing technique using filling process that can be widely useful for rapid products within a short time. So we have carried out some kinds of rapid products such as plastic knob and metal fan using our fixturing process. In fixturing step, the filling material might chosen a resin or a alloy according to wether the work material is plastic or metal respectively. Also we developed the set-up equipment attachable on the table of the milling machine that provided practicable quality during a series of machining operations, named by two step milling process.

  • PDF

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.169-178
    • /
    • 2020
  • Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.

Peanut Shells as an Environmentally Beneficial Sound-Absorbing Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.179-185
    • /
    • 2022
  • This study investigated the prospect of using peanut shells as an alternative and green sound-absorbing material. The sound-absorption coefficients were determined after filling impedance tubes of 30, 60, and 90 mm in height with peanut shells. The sound-absorption ability increased as the filling height increased, showing noise reduction coefficient (NRCs) of 0.23, 0.43, and 0.54 for the 30-, 60-, and 90-mm heights, respectively. In addition, for sounds greater than 2,000 Hz, the average sound-absorption coefficient of peanut shells in the 60- and 90-mm heights was 0.9. In summary, peanut shells were found to have good sound-absorption properties comparable to or better than those of bamboo, sisal, jute, and wool, and this research suggests that peanut shells may be useful as an environmentally friendly sound-absorbing material.

Experimental Investigation of the Sound Absorption Capability of Wood Pellets as an Eco-Friendly Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.126-133
    • /
    • 2022
  • In this study, I used wood pellets as an eco-friendly sound-absorbing material. The aim of the research was to analyze the effect of the filling height of wood pellets on sound absorption. This was done using two types of wood pellets of different lengths (A group: 1.5-3 cm, B group: less than 1.5 cm). With increasing filling height of the wood pellets, the optimum sound absorption shifted towards a lower frequency. The group B wood pellets had better sound absorption capacity than the group A ones. The optimum sound absorption coefficient of group A filled to a height of 7 cm was 0.722 at 864 Hz. On the other hand, that of group B filled to a height of 7 cm was 0.764 at 862 Hz, 5.82% higher than that of group A. While wood pellets are used as an eco-friendly fuel, the results of this study suggest the possibility of using wood pellets as an eco-friendly sound-absorbing material.

A Study on the Bending and Compressive Strength of Mortar using Waste Calcium Material as a Filling Material (폐칼슘 재료를 채움재로 사용한 모르타르의 휨·압축강도에 관한 연구)

  • Kim, Han-Nah;Kim, Bong Joo;Jung, Ui In;Seo, Eun-Seok;Hong, Sang Hun;Shin, Dong Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.64-65
    • /
    • 2020
  • Oyster shells are difficult to grind, while oyster shell powders have coarse and coarse grains, whereas egg shell powder, the same high calcium material, has small and soft particles and has opposing properties. In order to study the change in flexural and compressive strength by designing different mixing ratios using 50% of oyster shell powder and egg shell powder as a filling material. As a result of the experiment, there is almost no difference in the result.

  • PDF

Study on High-efficiency Hydraulic Filling Field Experiment for Subsidence Protection (지반침하 방지를 위한 고효율 수압식 충전 현장실험에 관한 연구)

  • Yang, In-Jae;Choi, Nam-Soo;Jeon, Chul-Soo;Lee, Sang-Eun;Shin, Dong-Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2014
  • Hydraulic filling methods are widely applied to suppress the land subsidence recently. But the research on high-efficiency hydraulic filling to protect the land subsidence is rare. In this study, field experiments to improve the efficiency of the hydraulic filling method are performed by changing the property, specification of the filling material and injection pipe. The filling amounts using vertical injection pipe, reducing tee (${\phi}100mm$) pipe, reducing tee (${\phi}80mm$) pipe and reducing tee (${\phi}50mm$) pipe showed 28.84 ton, 42.62 ton, 53.33 ton, and 63.33 ton respectively. The filling rates using reducing tee (${\phi}100mm$) pipe, reducing tee (${\phi}80mm$) pipe and reducing tee (${\phi}50mm$) pipe showed 47.8%, 84.9% and 119.6% respectively. Filling efficiency can be incresed by using reducing tee. This study shows that simply changing the type of injection pipe is expected to increase the hydraulic filling rate.

Damping identification procedure for linear systems: mixed numerical-experimental approach

  • El-Anwar, Hazem Hossam;Serror, Mohammed Hassanien;Sayed, Hesham Sobhy
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.203-217
    • /
    • 2013
  • In recent decades, it has been realized that increasing the lateral stiffness of structure subjected to lateral loads is not the only parameter enhancing safety or reducing damage. Factors such as ductility and damping govern the structural response due to lateral loads. Despite the significant contribution of damping in resisting lateral loads, especially at resonance, there is no accurate mathematical representation for it. The main objective of this study is to develop a damping identification procedure for linear systems based on a mixed numerical-experimental approach, assuming viscous damping. The proposed procedure has been applied to a laboratory experiment associated with a numerical model, where a hollow rectangular steel cantilever column, having three lumped masses, has been fixed on a shaking table subjected to different exciting waves. The modal damping ratio has been identified; in addition, the effect of adding filling material to the hollow specimen has been studied in relation to damping enhancement. The results have revealed that the numerically computed response based on the identified damping is in a good fitting with the measured response. Moreover, the filling material has a significant effect in increasing the modal damping.

Optimal Control of Chill layers through Regulation of Temperature on Shot Sleeve in Aluminum High Pressure Diecasting (Al고압주조공법에서 사출슬리브 온도 조절을 통한 Chill layer의 최적 제어)

  • Park, Jin-Young;Kim, Eok-Soo;Park, Yong-Ho;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.698-704
    • /
    • 2006
  • In this study, the effect of chill layers occurred in shot sleeve on the molten metal filling was analyzed through computer simulation. The behavior of chill layers with temperature variation of shot sleeve set from 200 to $280^{\circ}C$ was also investigated. The simulation results showed the chill layers set in the in-gates during the injection process change the main filling direction and cause turbulent flow pattern, resulting in porosities inside the castings. The amount of chill layers with the increasing temperature of shot sleeve was considerably reduced. Particularly, at the setting temperature of $280^{\circ}C$ by heat control unit, the biggest reduction in chill layers, excellent trimmed surface and the highest density were achieved, suggesting that as the optimal sleeve condition in aluminum high pressure diecasting, especially for highly complex parts like valve body.

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites

  • Choi, Deok-Yeong;Cha, Ye-Eun;Kim, Il-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.822-828
    • /
    • 2018
  • P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).

A Study on the Types of Crime and Scalability in Metaverse (메타버스 내 범죄발생 유형과 확장성에 관한 연구)

  • Song, HyeJin;Nam, Wanwoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.218-227
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Result: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320 Purpose: The purpose of this study is to examine the types of crimes taking place in the metaverse, and to establish a crime prevention strategy and find a legal deterrent against it. Method: In order to classify crime types in the metaverse, crime types were analyzed based on the results of previous studies and current incidents. Result: Most of the crimes taking place in the metaverse are done in games such as Roblox or Zeppetto. Most of the game users were teenagers. Looking at the types, there are many teens for sexual crimes, violent crimes, and defamation, but professional criminals are often included in copyright infringement, money laundering using virtual currency, and fraud. Conclusion: Since the types of crimes in the metaverse are diverse, various institutional supplementary mechanisms such as establishment of police crime prevention strategies, legal regulations, and law revisions will have to be prepared.