• Title/Summary/Keyword: Filler material

Search Result 577, Processing Time 0.03 seconds

The Strength of Material with the Amount and the Particle Size of Glass on Anorthite System for LTCC (Anorthite계 LTCC소재에서 Glass 입도와 함량 변화에 따른 강도 특성)

  • Gu, Sin-Il;Shin, Hyo-Soon;Hong, Youn-Woo;Yeo, Dong-Hun;Kim, Jong-Hee;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.864-868
    • /
    • 2010
  • Among LTCC material for substrate, the crystallized anorthite system was mainly studied as high strength material. However, specific factors that have affected on strength of material were studied insufficiently on anorthite system. In this study, the composition of anorthite glass was Ca-Al-Si-Zn-O. The changes of phase and microstructure were observed with the amount and the particle size of glass and the sintering temperature. It was studied that the factors affected on the strength of material. Phases of anorthite and $ZnAl_2O_4$ were formed with the increase of sintering temperature. The $Al_2O_3$ phase was increased with $Al_2O_3$ amount, acted as filler, and the strength of material is increased with $Al_2O_3$ phase. But phases of anorthite and $ZnAl_2O_4$ didn't affect on the strength of material. In the case of 60 vol% glass amounts and below $3.2\;{\mu}m$ of glass particle size, the strength of material was decreased. It is thought that the decrease of strength was due to non-homogeneous mixing between glass powder and filler.

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS (치과용 복합레진의 파괴인성에 관한 실험적 연구)

  • Park, Jin-Hoon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

Basic Study on Fiber Composite Panel Production for Impact·Blast Resistant (방호·방폭 보강용 복합섬유 패널 제작을 위한 기초연구)

  • Kim, Woonhak;Kang, Seokwon;Yun, Seunggyu
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.235-243
    • /
    • 2015
  • The methods to improve the protection and explosion-proof performance of concrete structures include the backside reinforcement or concrete material property improvement and the addition of structural members or supports to increase the resistance performance, but they are inefficient in terms of economics and structural characteristics. This study is about the basic study on the fiber composite panel cover, and the nano-composite material and adhesive as the filler, to maximize the specific performance of each layer and the protection and explosion-proof performance as the composite panel component by improving the tensile strength, light weight, adhesion and fire-proof performances. The fiber composite panel cover (aramid-polyester ratios of 6:4 and 6.5:3.5) had a 2,348 MPa maximum tensile strength and a 1.8% maximum elongation. The filler that contained the nano-composite material and adhesive had a 4 MPa maximum tensile shear adhesive strength. In addition, the nano-composite filler was 30% lighter than the normal portland cement

A Study on the Applicability of Heavyweight Waste Glass and Steel Slag as Aggregate in Heavyweight Concrete (고밀도 폐유리와 제강슬래그의 중량 콘크리트 골재로의 적용성에 관한 연구)

  • Choi, So-Yeong;Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2019
  • The many countries are facing the shortage of natural resources, and the supply of aggregates are being exhausted. To consider this situation a variety of studies were performed for the development of alternative resources. In particular, high density filler material was used for shielding radioactive waste, large amount of natural aggregates are required in order to produce filler material. Also, in order to improve the shielding performance of filler material, it is required to increase the density of the filler material. Therefore, in this study was carried out to provide basic data for expanding the feasibility of high density industrial waste resource as aggregate in heavyweight concrete. From the test results, OPC case, concrete strength decreased by using heavyweight waste glass as fine aggregate, however, it is improved by using mineral admixture as binder. Therefore, when the heavyweight waste glass and steel slag are applied to heavyweight concrete, it is desirable to use mineral admixture, especially to use BFS than FA. Meanwhile, when the steel slag was replaced as coarse aggregate of heavyweight concrete, elasticity of modulus and radiation shielding performance can be improved owing to high density of steel slag.

Analysis of electrical, thermal characteristic of Nano/Micro Epoxy composite (나노/마이크로 에폭시 복합체의 전기적, 열적특성 분석)

  • Jung, Eui-Hwan;Yoon, Jae-Hun;Lim, Kee-Joe;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.99-99
    • /
    • 2010
  • Polymer nanocomposite has been attracting much attention as a new insulation material, since homogeneous dispersion of nm-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown strength of Nano-TiO2 and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulation materials. Nano-TiO2 particle size is about 10nm and composites ratio was resin (100) : hardener (82) : accelerator (1.5). AC breakdown test was performed at room temperature (25 [$^{\circ}C$], 80 [$^{\circ}C$] and 100 [$^{\circ}C$] in the vicinity of Tg (90[$^{\circ}C$]). And thermal conductivity were measured by ASTM-D5470.

  • PDF

Analysis of Surface Tracking of Micro and Nano Size Alumina Filled Silicone Rubber for High Voltage AC Transmission

  • Loganathan, N.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.345-353
    • /
    • 2013
  • This paper discusses the experimental results in an effort to understand the tracking and erosion resistance of the micro and nano size $Al_2O_3$ filled silicone rubber (SIR) material which has been studied under the AC voltages, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro and nano size filled specimens were analyzed through leakage current measurement and the eroded masses were used to evaluate the relative erosion and tracking resistance of the composites. The fundamental, third and fifth harmonic of the leakage current during the tracking study were analyzed using moving average current technique. It was observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. The thermogravimetry-derivative thermo gravimetric (TG-DTG) studies were performed to understand the thermal degradation of the composites. The physical and chemical studies were carried out by using scanning electron microscope (SEM), Energy Dispersive X-ray analysis (EDAX) and Fourier Transform Infra-red (FTIR) Spectroscopy. The obtained result indicated that the performance of nano filled SIR was better than the micro filled SIR material when the % wt. of filler increased.

A Study on the Hardening Behavior and Metal-Mold Reaction in Dental Investment Materials for Titanium Castings (티타늄합금 주조용 치과매몰재의 조성에 따른 경화거동 및 용탕반응성에 관한 연구)

  • Jeong, Kuk-Jin;Yeo, In-Dong;Shim, Kwang-Bo
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.419-426
    • /
    • 1999
  • Hardening behavior and metal-mold reaction of phosphate bonded investments for titanium and titanium alloys were investigated. Alumina and $Y_2O_3-stabilized$ zirconia, which are thermodynamically more stable than Titania, were used as major filler materials. $NH_4H_2PO_4$ was used as binder, and MgO was used as hardening acceleration material. A different composition ratio of binder and hardening acceleration material had effected on general hardening behavior and castings. And adding $YO_3-stabilized$ zirconia to alumina, metal-mold reaction characteristics for castings was evaluated. Considering working conditions and effects on castings, the best composition ratio conditions were both 10:10 and 12:8($NH_4H_2PO_4vs.\;MgO$). On the other hand, increasing the contents of $Y_2O_3-stabilized$ zirconia for filler material, metal-mold reaction layer of titanium castings was greatly decreased.

  • PDF

Effect of Coffee Grounds on Mechanical Behavior of Poly Propylene Composites

  • Vinitsa Chanthavong;M. N. Prabhakar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.264-269
    • /
    • 2023
  • Spent coffee grounds (SCG) are a ubiquitous byproduct of coffee consumption, representing a significant waste management challenge, as well as an untapped resource for economic development and sustainability. Improper disposal of SCG can result in environmental problems such as methane emissions and leachate production. This study aims to investigate the physicochemical properties of SCG and their potential as a reinforcement material in polypropylene (PP) to fabricate an eco-friendly composite via extrusion and injection molding, with SCG filler ratios ranging from 5-20%. To evaluate the effect of SCG on the morphological and mechanical properties of the bio- composite, thermogravimetric analysis, SEM, tensile, flexural, and impact tests were conducted. The results demonstrated that the addition of SCG lead to a slight increase in brittleness of the composite but did not significantly affect its mechanical properties. Impressively, the presence of a significant organic component in SCG contributed to the enhanced thermal performance of PP/SCG composites. This improvement was evident in terms of increased thermal stability, delayed onset of degradation, and higher maximum degradation temperature as compared to pure PP. These findings suggest that SCG has potential as a filler material for PP composites, with the ability to enhance the material's properties without compromising overall performance.

Evaluation of Field Applicability of Controlled Low Strength Materials as Cavity Filling Materials Various Industrial by Products (공동충전재로써 산업부산물을 복합적으로 활용한 슬러리계 되메움의 현장적용성 평가)

  • Liao, XiaoKai;Kim, Dong-Hun;Lim, Nam Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.72-73
    • /
    • 2021
  • In this study, the engineering characteristics of CLSM mixed with GBFS and GF were identified to review the applicability as a replacement material and further evaluate the recharge and field applicability as a joint filler material. First, Using more than 30% of GBFS to replace FA enabled bleeding control through improved fluidity. Second, When using more than 30% of FNS to replace sand, it was found that adding 0.25~0.35 of the AE agent is effective for bleeding control through improved fluidity. Third, When using more than 30% of both GBFS and FNS in combination, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Also, it was confirmed that proper mixing of 15~60% of GF secured the effective strength and desired quality as a refiller and joint filler material.

  • PDF

Interfacial Characterization of Mineralized Carbon Nanotubes (광물화된 탄소나노튜브 첨가재의 계면 특성화)

  • Park, Chanwook;Jung, Jiwon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.282-287
    • /
    • 2018
  • In this paper, we explore interfacial properties of the mineralized CNTs when they are employed as reinforcing fillers in a polymer nanocomposite using molecular dynamics (MD) simulations. Recently, several studies on mineralizing carbon nanotubes (CNTs) with an aid of nitrogen doping to CNTs have been reported. However, there is a lack of studies on the reinforcing effects of the mineralized CNTs when it is employed as a filler of nanocomposites. Silica ($SiO_2$) is used as a mineral material and poly (methyl metacrylate) (PMMA) is used as a polymer matrix. Pull-out simulations are conducted to obtain the interfacial energy and the interfacial shear stress. It was found that the silica mineralized CNTs have higher interfacial interaction with the polymer matrix. In the future, by examining various thermomechanical properties of the mineralized-CNT-filler/polymer nanocomposites, we will search for potential applications of the novel reinforcing filler.