• Title/Summary/Keyword: Filler leaching

Search Result 8, Processing Time 0.025 seconds

FILLER LEACHING FROM NANOFILLER-CONTAINED COMPOSITE RESIN IN VARIOUS MEDIA (수종의 저장 용액에서 나노필러를 함유한 복합레진의 필러의 용출량에 관한 연구)

  • Yang, Kyu-Ho;Heo, Su-Kyung;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.62-70
    • /
    • 2009
  • The objective of this study was to measure the leaching of filler (Si, Ba) from nanofiller-contained composites (Palfique Estelite $sigma^{{R}}$ (Tokuyama Dental Corp., Tokyo, Japan), $Z-350^{{R}}$ (3M ESPE, USA), Ceram X duo $E3^{{R}}$, $D3^{{R}}$ (Dentsply, Konstanz, Germany)) under different conditions. The samples used for the study of leachable components were made by insertion of the material into a circular mold, 10 mm in diameter and 3.0 mm high. Each specimen was placed in a disposable polystyrene vial containing 5 mL of distilled water, artificial saliva or 0.1N NaOH and kept in an oven at $37^{\circ}C$. ; water and artificial saliva - 150 days, 0.1N NaOH - 15days. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the amount of Si and Ba in the test solutions. 1. Filler leaching was significantly great in 0.1N NaOH among all samples(p<.0.001). 2. When samples were stored in the distilled water, Estelite showed the lowest amount of Si leaching. When samples were stored in the artificial saliva, Z-350 showed the lowest amount of Si leaching. 3. There were significant differences in filler leaching between 3 storage medias and composite resins(p<.0.001). 4. Si and Ba leaching occurred in greater proportion when samples were stored in the artificial saliva than distilled water. 5. There were significant interactions in monthly filler leaching between leaching in artificial saliva and in distilled water, as well as the interaction between storage medium and filler(p<.0001). These results indicate that a continuous filler leaching of nanofiller-contained composite resins was in storing aqueous solutions under over time.

  • PDF

Elution Safety of Recycled Plastic/EAF Dust Composites by Using Leaching Test (폐플라스틱/제강 Dust 성형제의 용출안전성에 대한 연구)

  • Kang, Young-Goo;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.85-91
    • /
    • 2003
  • In this study, We have investigated leaching characteristics of heavy metals for recycled plastic composites containing EAF(Electric Arc Furnace) dust & EAF slag. EAF dust & EAF slag used that is generated in the 3 steel-making compaines in domestic. The physical and chemical properties of EAF dust & slag was examined by measuring specific surface area. porosity, oil absorption test and chemical wetting analysis etc. Results of total analysis indicated that EAF dust, slag contained significant amount of hazardous metals such as Cu, Pb, Cd and Cr. But, In the leaching test of the recycled plastic composites containing EAF dust, slag by Korean Standard Leaching Procedure, composites shows much lower leaching concentration of heavy metals. It was concluded that the recycled plastic composites containing EAF dust, slag showed good physical and chemical characteristics. This means that the EAF dust, slag can be effectively used as a functional filler.

Preparation and Characterization of the Mine Residue-based Geopolymeric Ceramics (광미를 이용한 지오폴리머 세라믹제조 및 물성)

  • Son, Se-Gu;Lee, Woo-Keun;Kim, Young-Do;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.502-508
    • /
    • 2011
  • The goal of the present work was to investigate the development of a geopolymeric ceramic material from a mixture of mine residue, coal fly ash, blast furnace slag, and alkali activator solution by the geopolymer technique. The results showed that the higher compressive strength of geopolymeric ceramic material increased with an increase in active filler (blast furnace slag + coal fly ash) contents and with a reduction of mine residue contents. The geopolymeric ceramic had very high early age strength. The compressive strength of the geopolymeric ceramic depended on the added active filler content. The maximum compressive strength of the geopolymeric ceramic containing 20 wt.% mine residue was 141.2 MPa. The compressive strength of geopolymeric ceramic manufactured by adding mine residue was higher than that of portland cement mortar, which is 60 MPa, when cured for 28 days. SEM observation showed the possibility of having amorphous aluminosilicate gel within geopolymeric ceramic. XRD patterns indicate that the geopolymeric ceramic was composed of amorphous aluminosilicate, calcite, quartz, and muscovite. The Korea Standard Leaching Test (KSLT) was used to determine the leaching potential of the geopolymeric ceramic. The amounts of heavy metals were noticeably reduced after the solidification of mine residue with active filler.

solidification/Stabilization of Hazardous Wasted Using Cementitious Material(I) (특수시멘트 고화재를 이용한 지정폐기물의 고형화/안정화(I))

  • Lim, C.Y.;Paik, S.H.;Um, T.S.;Choi, L.;Oh, B.H.;Lee, K.H.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.205-210
    • /
    • 2000
  • This study concerns the cement-solidification. stabilization of the electric furnace dust. Compressive strength and leaching test of heavy metals were evaluated for varing types and ratios of cements and the effect of some additives of hauyne clinker and slag were also discussed. In this cases of using cement binders more than 30%, the compressive strength showed the values over 150kgf/cm2. so it can be used as filler for concrete precastings. Type III cement and Hauyne clinker improved the compressive strength, especially early strength. Leaching amount of heavy metals was decreased when using type III cement and adding hauyne clinker and slag. The values were especially low in the case of slag addition.

  • PDF

Characteristics Evaluation of Radiation Shielding Materials Used Waste Glass and Chelate Resins (폐유리와 킬레이트 수지를 사용한 방사선 차폐재의 재료특성 평가)

  • Kim, Hyo-Jung;Jang, Jong-Min;Song, Young-Soon;Noh, Jae-Ho;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.56-64
    • /
    • 2019
  • Various approaches have been attempted to develop recycling technologies related to industrial waste resources containing metals. Among them, glass is not decomposed into microorganisms, so landfill is not suitable, and interest in the recycling of waste glass is increasing. In this paper, by incorporating chelate resin to suppress the elution of heavy metals in waste glass and using waste glass as a fine aggregate and we want to evaluate the strength, drying shrinkage, alkali-silica reaction and heavy metal leaching of shielded filler materials and to provide basic data for utilizing waste glass as an economical and environmentally friendly shielding filler. As a result of the test, it was found that the use of waste glass as a fine aggregate was effective in the development of strength, but the incorporation of chelate resin had an influence on the strength development. In addition, the addition of chelate resin was effective in improving drying shrinkage but it was found to affect the alkali - silica reaction. As a result of the heavy metal leaching test, the KSLP test method satisfies all the criteria for heavy metal leaching. However, in case of lead, the limit of US ANSI 67-2007a was exceeded and further study should be done.

Durability Enhancement in Nano-Silica Admixed Reinforced Mortar

  • Saraswathy, Velu;Karthick, Subbiah;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.297-306
    • /
    • 2014
  • Recently nano-materials are gaining more importance in the construction industry due to its enhanced energy efficiency, durability, economy, and sustainability. Nano-silica addition to cement based materials can control the degradation of the fundamental calcium-silicate-hydrate reaction of concrete caused by calcium leaching in water as well as block water penetration and therefore lead to improvements in durability. In this paper, the influence of synthesized nano silica from locally available rice husk on the mechanical properties and corrosion resistant properties of OPC (Ordinary Portland Cement) has been studied by conducting various experimental investigations. Micro structural properties have been assessed by conducting Scanning Electron Microscopy, Thermo gravimetry and Differential Thermal Analysis, X-Ray Diffraction analysis, and FTIR studies. The experimental results revealed that NS reacted with calcium hydroxide crystals in the cement paste and produces Calcium Silicate Hydrate gel which enhanced the strength and acts as a filler which filled the nano pores present in concrete. Hence the strength and corrosion resistant properties were enhanced than the control.

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.

EFFECT OF PH AND STORAGE TIME ON THE ELUTION OF RESIDUAL MONOMERS FROM POLYMERIZED COMPOSITE RESINS (산도변화와 침지시간이 광중합 복합레진의 잔류단량체 유출에 미치는 영향)

  • Jeon, Cheol-Min;Yoo, Hyun-Mi;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.249-266
    • /
    • 2004
  • The purpose of this study was to determine whether pH and time has any influence on the degradation behavior of composite restoration by analyzing the leached monomers of dental composites qualitatively and quantitatively after storage in acetate buffer solution as a function of time using high performance liquid chromatography (HPLC) / mass spectrometer. Materials and Methods:Three commercial composite restorative resin materials (Z-250, Heliomolar and Aeliteflo) with different matrix structure and filler composition were studied. Thirty specimens (7mm $diameter{\times}2mm$ thick) of each material were prepared. The cured materials were stored in acetate buffer solution at different pH (4, 7) for 1, 7 and 45days. As a reference, samples of unpolymerized composite materials of each product were treated with methanol (10mg/ml). Identification of the various compounds was achieved by comparison of their mass spectra with those of reference compound, with literature data. and by their fragmentation patterns. Data were analysed statistically using ANOVA and Duncan's test. Results:1. Amounts of leached TEGDMA in Aeliteflo were significantly larger than those of UDMA in Z-250 and Heliomolar at experimental conditions of different storage time and pH variation (p<0.001). 2. As to comparison of the amounts of leached monomers per sorage time, amounts of leached TEGDMA in Aeliteflo and UDMA in Z-250 and Heliomolar were increased in the pH 4 solution more significantly than in the pH 7 solution after 1day, 7days and 45days, respectively (p<0.001). 3. In total amounts of all the leached monomers with storage times, the overall amounts of pH 4 extracts were larger than those of pH 7 extracts for all resin groups, but there was no significant difference (p>0.05).