• Title/Summary/Keyword: Filled Water

Search Result 886, Processing Time 0.029 seconds

The caries preventive effect on permanent teeth adjusted for number of fissure-sealed teeth and surfaces from 6-year community water fluoridation program in Geoje City (거제시 수돗물불소농도조정사업 6년 경과 후의 영구치우식 예방효과)

  • Cho, Hyun-Hee;Ok, Tae-Young;Kim, Se-Yeon;Lee, Jung-Ha;Kim, Ji-Soo;Kim, Hyeon-Cheol;Jeong, Seung-Hwa;Kim, Jin-Bom
    • Journal of Korean Academy of Oral Health
    • /
    • v.41 no.4
    • /
    • pp.296-302
    • /
    • 2017
  • Objectives: The water fluoridation program has been implemented since 2008, in a region of Geoje City. This study aimed to evaluate the effectiveness of the water fluoridation program on caries prevention in the permanent dentition. Methods: Evaluation surveys were conducted on 8-, 10- and 12-year-old children in the fluoridated and non-fluoridated regions of Geoje City, in 2015. The survey included 834 children from the fluoridated regions and 703 from the non-fluoridated regions. The data obtained from the survey were analyzed using the IBM SPSS statistical package version 23.0. The effectiveness of community water fluoridation in caries prevention was estimated by the differences in the decayed, missing, filled teeth (DMFT) and decayed, missing, filled surfaces (DMFS) scores, between the program and control groups. The mean numbers of fissure-sealed teeth and surfaces were adjusted to reduce their confounding effect. Results: The mean DMFT and DMFS scores (0.69 and 0.91, respectively) of 10-year-olds from the fluoridated regions, after adjusting for the numbers of fissure-sealed teeth and surfaces, were significantly lower than those of the 10 year olds (DMFT: 0.95, DMFS: 1.32) from the non-fluoridated regions. The effectiveness of water fluoridation on caries prevention in the permanent dentition, estimated based on the differences in the mean DMFT and DMFS scores, adjusted for the number of fissure-sealed teeth and surfaces, between the program and control groups of 10-year-old children, was 27.4% and 31.1%, respectively. Conclusions: These results suggest that the effectiveness of water fluoridation on caries prevention in the permanent dentition, in Geoje City was so high that this program should be implemented in other regions in Korea as well.

A Note on Under ground water (지하수에 대한 소고)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1055-1063
    • /
    • 1966
  • Ground water hydrology may be defined as the science of the occnrrence, distribution, and movement of water below the surface of the earth. Geohydrology has an identical connotation, and hydrogeology differs only by its greater emphasis on geology. Ground water referred to with out further specification is commonly understood to mean water occupying all the voids with in a geologic stratum. This saturated zone is tobe distinguished from an unsaturated, or aeration zone where voids are filled \yith water and air. Water contained in saturate:! zones is important for engineering works, geologic studies, and water supply developements Conseqently, the occurrence of water in these zones will be emphasized here. Un-saturated zones are usualiy found above saturated zones and extending upward to the ground surface. Because this water includes soil moisture with in the root zone, it is a major concern of agricultlre, botmy and soil science. No rigid demarcation of waters, between the two zones is possible, for they possess an iriterdependent boundary and water can move from zone to zone in either science, including eology, hydrology, meteorology, and oceanography are concerned with earths water, but ground water hydrology may be regarded as a specialized science combining elements of geology, hydrology, and fluid mechanics. Geology governs the occurrence and distribution of ground water, hydrology determines the supply of water to the ground, and fluid mechanics explains its movement. To provide maximum development of grofnd water resources. for benefical use requires thinking in terms of an entire ground water basin. In order to inorease the natural supply of ground water, man has attempted to artifially recharge ground water basins. Coastal aquifers come in contact with the ocean at seawater of the coastline. Fresh ground water is discharged in to the ocean. the seaward flow of ground water has been decreased or even reversed, Sea water penettating in land in aquifer.

  • PDF

Seismic damage evaluation of steel reinforced recycled concrete filled circular steel tube composite columns

  • Hui, Ma;Xiyang, Liu;Yunchong, Chen;Yanli, Zhao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.445-462
    • /
    • 2022
  • To investigate and evaluate the seismic damage behaviors of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns, in this study, the cyclic loading tests of 11 composite columns was carried out by using the load-displacement joint control method. The seismic damage process, hysteretic curves and performance indexes of composite columns were observed and obtained. The effects of replacement rates of recycled coarse aggregate (RCA), diameter thickness ratio, axial compression ratio, profile steel ratio and section form of profile steel on the seismic damage behaviors of composite columns were also analyzed in detail. The results show that the failure model of columns is a typical bending failure under the combined action of horizontal loads and vertical loads, and the columns have good energy dissipation capacity and ductility. In addition, the replacement rates of RCA have a certain adverse effect on the seismic bearing capacity, energy consumption and ductility of columns. The seismic damage characteristics of composite columns are revealed according to the failure modes and hysteretic curves. A modified Park-Ang seismic damage model based on the maximum displacement and cumulative energy consumption was proposed, which can consider the adverse effect of RAC on the seismic damage of columns. On this basis, the performance levels of composite columns are divided into five categories, The interlayer displacement angle and damage index are used as the damage quantitative indicators of composite columns, and the displacement angle limits of composite columns at different performance levels under 80% assurance rate are calculated as 1/105, 1/85, 1/65, 1/28, and 1/25 respectively. On this basis, the damage index limits corresponding to each performance level are calculated as 0.045, 0.1, 0.48, 0.8, and 1.0 respectively. Finally, the corresponding relations among the performance levels, damage degrees, interlayer displacement angles and damage indexes of composite columns are established. The conclusions can provide reference for the seismic design of SRRC filled circular steel tube composite columns, it fills the vacancy in the research on seismic damage of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns.

Silent Disicharge Characteristics of Alumina Discharge Tube for Ozone Generation (오존발생을 위한 알루미나 방전관의 무성방전특성)

  • 김학규;곽동주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.783-786
    • /
    • 2001
  • Recently deep interests and attractions have been paid on the generation of ozone, which is widely used to remove bad smell and to clear water. Silent discharge is considered as one of the most effective methods to generator ozone. In this paper, silent discharge reactors were made, waich were filled with different dielectric materials, and some silent discharge charactistics were investigated experimantaiiy.

  • PDF

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Considerations of Permeability of Converter Slag for Recycling in vertical drainage method (연직배수공법에 있어서 제강슬래그의 재활용을 위한 투수성 연구)

  • 이광찬;정규향;김영남;이문수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.93-112
    • /
    • 2000
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. Converter slag being submerged with fresh water, the coefficients of permeability in A and B samples less than 10mm grain sizes were measured as 6.52${\times}$10$\^$-2/cm/sec and 5.99${\times}$10$\^$-1/cm/sec, while changed as 1.88${\times}$10$\^$-2/cm/sec, 3.86${\times}$10$\^$-1/cm/sec under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 180 days on using sea water, the coefficients of permeability of sample A and B samples decreased ten times smaller than those initial values. And after that time continually decreased as for till 360 days. The reduction of permeability coefficient was considered to influence filled with voids in high-calcium quicklime(CaO). However, in-situ coefficient of permeability was practically satisfactory.

  • PDF

Considerations of Permeability of Converter Slag for Recycling in vertical drainage method (연직배수공법에 있어서 제강슬래그의 재활용을 위한 투수성 연구)

  • 이광찬;정규향;김영남;이문수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.12-31
    • /
    • 2000
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory. The effects of grain size, flow water time and aging were investigated using sea and fresh water. Converter slag being submerged with fresh water, the coefficients of permeability in A and B samples less than 10mm grain sizes were measured as 6.52${\times}$10$\^$-2/cm/sec and 5,99${\times}$10$\^$-1/cm/sec, while changed as 1,88${\times}$10$\^$-2/cm/sec, 3.86${\times}$10$\^$-1/cm/sec under sea water condition. Also, the condition of turbulent flow may exit and was experimentally identified from the relationship between hydraulic gradient and seepage velocity. After 180 days on using sea water, the coefficients of permeability of sample A and B samples decreased ten times smaller than those initial values. And after that time continually decreased as for till 360 days. The reduction of permeability coefficient was considered to influence filled with voids in high-calcium quicklime(CaO). However, in-situ coefficient of permeability was practically satisfactory.

  • PDF

Neutron Reflecting Effects by Water and Concrete (물과 콘크리트에 의한 중성자(中性子)의 반사효과(反射效果))

  • Min, Duck-Kee;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 1983
  • Neutron reflecting effects in terms of effective multiplication factor have been calculated with varying water or concrete thickness, and gap distance between concrete reflector and a fissile solution system. A numerical calculation of effective multiplication factors has been carried out by using the discrete ordinates method with the help of the computer code, ANISN. It is revealed that the reflecting .effect by thin concrete is lower than that of the identical thickness of water while the effect by thick water is low compared to that of the identical thickness of concrete. It seems that the effective multiplication factors are first decreasing rapidly with gap distance, which is filled with water, between concrete reflector and the fissile solution system, and then decrease slowly over the distance of about 15cm.

  • PDF

Study of Water Diffusion in PE-SiO2 Nanocomposites by Dielectric Spectroscopy

  • Couderc, Hugues;David, Eric;Frechette, Michel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.291-296
    • /
    • 2014
  • In recent years, researchers have extensively investigated polymers filled with inorganic nanoparticles because these materials present improved physical properties relative to those of conventional unfilled polymers. Oxides, silica in particular, are the most commonly used inorganic particles because they possess good properties and can be fabricated at a low cost. However, oxides are hydrophilic in nature, and this leads to the presence of water at the interface between the nanoparticles and the polymer matrix. Due to the predominance of particle-matrix interfaces in nanocomposites, the presence of water at the interlayer region can be problematic. Moreover, the hydrophobic nature of most polymers, particularly for polyolefins such as polyethylene, may make it difficult to remove this interfacial water. In this paper, as-received and moistened samples of agglomerated nanosilica/polyethylene were dried using an isothermal treatment at $60^{\circ}C$, and the efficacy of this treatment was studied using dielectric spectroscopy. The Maxwell-Wagner-Sillars relaxation peaks were observed to shift to lower frequencies by three decades, and this was linked to a modification of the water content, due to drying, at the interfaces between silica and polyethylene and at the interfaces within the nanosilica agglomerates. The evolution of the extracted retardation time is explained by the nanosilica hydrophily and the free volume introduced by the nanoparticles.

Experimental Study on Compaction Effect of Hydraulic Fill Soils (실내실험을 통한 수중 매립토의 다짐효과 분석)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Chang, Woong-Hee;Bong, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.301-310
    • /
    • 2006
  • A series of laboratory tests was carried out for analyzing compaction characteristics of hydraulic fill soils(or hydraulically filled soils). Hydraulic fill soils were settled down by the weight of soil particle itself in water and consolidated by the extraction of water from the soil structures. Water content and dry unit weight were observed as the depth of sedimentation and consolidation soil. It was found from the result that the optimum water content $(W_{cpt})$ of the maximum unit weight$(\gamma_{dmax})$ is higher than that of laboratory compaction test(KS F 2312 A method). It was due to difference in compaction energy and compaction effect between two methods. And the maximum dry unit of hydraulic fill soil is smaller than that of laboratory compaction test. Especially in terms of compaction effect, the maximum relative compaction degrees$(R_{cmax})$ of Seamangum dredged sand, river sand and mixed sand, half and half of dredged and river sands, were 85%, 91% and 86%, respectively. It means that the compaction effect can be $85\sim91%$ of the maximum unit weight in laboratory compaction test.

  • PDF