• Title/Summary/Keyword: Fill-Factor

Search Result 528, Processing Time 0.027 seconds

Music Visualization Expression in Modern Fashion - Focus on the application of Mondrian's paintings to Alexander McQueen's 2014 Spring Ready-to-wear Collection -

  • Kim, Sung-Soo;Kim, Young-Sam
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2014
  • This study analyzes music visualization characteristics in modern fashion based on Wassily Kandinsky's music visualization theory. Alexander McQueen's 2014 Spring Ready-to-wear Collection (as inspired by Mondrian's paintings) was selected as the research subject. First, an analysis of Mondrian's paintings based on Wassily Kandinsky's theory shows that music visualization characteristics can be categorized into spatiality, mobility, and duality. Second, McQueen applied Mondrian's paintings to the overall design, structured the model's shape in the painting, or created patterns using colors and lines that introduced them in clothes; symbolic forms were also introduced as part of or a decorative factor of the clothes. Third, spatiality refers to the creation of a feeling of space through emptiness or fill using lines, colors, and shape. Musical atmosphere such as dissonance were expressed in clothing through the application of color contrast, lines and silhouette dynamics, and symbolic format and patterns by Mondrian. Fourth, mobility generally refers to motion caused by a certain stimulus. Mondrian expressed vibration, internal resonance, sound level in music that emphasized color irregularity, primary color contrast, and rough brush touches as well as free and organic patterns. McQueen expressed this with primary color contrast using different materials, rough touch based on texture, and pattern repetition through transformation. Fifth, duality generally refers to the artistic effect caused by overlap. Mondrian created a resemblance of dissonance and music through line and color as expressed through the duality of clothing design components based on the artistic sense of the designer.

Electrochemical Properties of Dye-sensitized Solar Cells Using TiO2 Paste Prepared by Simple Process (Simple 프로세스로 제조된 TiO2 페이스트를 이용한 염료감응 태양전지의 전기화학적 특성)

  • Zhao, Xing Guan;Park, Ju-Young;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.718-724
    • /
    • 2014
  • In this work, in order to manufacture the photoelectrode of dye-sensitized solar cells, the different anatase $TiO_2$ paste was prepared by simple route using hydrothermal method. In comparison with the traditional preparing process, the hydrothermally synthesized $TiO_2$ gel was used to make paste directly. Thus, the making process was simplified and the solar conversion efficiency was improved. In comparison with 5.34% solar energy efficiency of HP-1 photoelectrode, the 6.23% efficiency of HDP-1 electrode was improved by 16.67%. This is because hydrothermally synthesized $TiO_2$ gel was used to make paste directly, the dispersibility between $TiO_2$ particles was improved and get the smoother network, leading to the charge transport ability of the electron generated in dye molecular was improved. Further, HDP-2 photoelectrode delivered the best results with Voc (open circuit voltage), Jsc (short circuit current density) FF (fill factor) and ${\eta}$(solar conversion efficiency) were 0.695 V, $15.81mA\;cm^{-2}$, 61.48% and 6.80%, respectively. In comparison with 5.34% of HP-1 photoelectrode, it was improved by 27.34%.

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers (플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Choo, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

Effect of Se Flux and Se Treatment on the Photovoltaic Performance of β-CIGS Solar Cells

  • Kim, Ji Hye;Cha, Eun Seok;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • $Cu(In,Ga)_3Se_5$ (${\beta}-CIGS$) has a band gap of 1.35 eV which is an optimum value for high solar-energy conversion efficiency. However, ${\beta}-CIGS$ film was not well characterized yet due to lower efficiency compared to $Cu(In,Ga)Se_2$ (${\alpha}-CIGS$). In this work, ${\beta}-CIGS$ films were fabricated by a three-stage co-evaporation of elemental sources with various Se fluxes. As the Se flux increased, the crystallinity of ${\beta}-CIGS$ phase was improved from the analysis of Raman spectroscopy and a deep-level defect was reduced from the analysis of photoluminescence spectroscopy. A Se treatment of the ${\beta}-CIGS$ film at $200^{\circ}C$ increased Ga content and decreased Cu content at the surface of the film. With the Se treatment at $200^{\circ}C$, the cell efficiency was greatly improved for the CIGS films prepared with low Se flux due to the increase of short-circuit current and fill factor. It was found that the main reason of performance improvement was lower Cu content at the surface instead of higher Ga content.

A Study on the Characteristics of Dye Sensitized Solar Cells with TiO2 Thickness and Sintering Temperature (TiO2 두께 및 소성온도에 따른 염료감응 태양전지 특성에 관한 연구)

  • Lee, Young-Min;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1233-1238
    • /
    • 2014
  • In this thesis, it is investigated the characteristics of Dye Sensitized Solar Cell (DSSC) according to variation of $TiO_2$ thickness (6, 12, 18, and $24{\mu}m$) and three distinct $TiO_2$ sintering temperatures (350, 450 and $550^{\circ}C$) by XRD, SEM, I-V and UV-Vis spectrophotometer. According to sintering temperature, $TiO_2$ was transformed into the anatase structure at $350^{\circ}C$, rutile structure at $550^{\circ}C$ and further into the two structure at $450^{\circ}C$. With increasing thickness up to $18{\mu}m$ and sintering temperature up to $450^{\circ}C$, respectively, the irradiance rate increased in the range of 9~26 percent and 2.80~5.10 percent. Whereas a further increase to $24{\mu}m$ and $550^{\circ}C$, the irradiance rate decrease in the range of 4~11 percent and 30~47 percent. The conversion efficiency increased in the range of 2.80~5.01 and 3.03~5.01 with increasing thickness up to $18{\mu}m$ and sintering temperature up to $450^{\circ}C$. By contrast, increase to $24{\mu}m$ and $550^{\circ}C$, the conversion efficiency decreased in the range of 3.31~5.01 and 2.80~3.89, respectively. The DSSC that thickness of $TiO_2$ were $18{\mu}m$ and sintered at $450^{\circ}C$ exhibited the most excellent characteristics, in which open-circuit voltage, short-circuit current, Fill Factor and conversion efficiency are 0.69 V, $11.4mA/cm^2$, 0.64 and 5.01%, respectively.

Improving Efficiencies of DSC by Down-conversion of LiGdF4:Eu (Eu이 도핑된 LiGdF4의 Down-conversion을 이용한 염료감응형 태양전지의 효율 향상)

  • 김현주;송재성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.323-328
    • /
    • 2004
  • Down-conversion of Eu$^{3+}$ doped LiGdF$_4$ (LGF) for increasing the cell efficiency on dye-sensitized Ti $O_2$ solar cells has been studied. The dye sensitized solar cell (DSC) consisting of mesoporous Ti $O_2$ electrode deposited on transparent substrate, an electrolyte containing I$^{[-10]}$ /I$_3$$^{[-10]}$ redox couple, and Pt counter electrode is a promising alternative to the inorganic solar cell. The structure of DSC is basically a sandwich type, viz., FTO glass/Ru-red dye-absorbed Ti $O_2$/iodine electrolyte/sputtered Pt/FTO glass. The cell without down converter had open circuit potential of approximately 0.66 Volt, the short circuit photocurrent density of 1.632 mA/$\textrm{cm}^2$, and fill factor of about 50 % at the excitation wavelength of 550 nm. In addition, 5.6 mW/$\textrm{cm}^2$ incident light intensity beam was used as a light source. From this result, the calculated monochromatic efficiency at the wavelength of 550 nm of this cell was about 9.62 %. The incident photon to current conversion efficiency (IPCE) of N3 used as a dye in this work is about 80 % at around 590 nm and 610 nm, which is the emission spectrum of Eu$^{3+}$ doped LGF, results in efficiency increasing of DSC.C.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Investigation of the Ni/Cu metal grid space for high-effiency, low cost crystlline silicon solar cells (고효율, 저가화 태양전지에 적합한 Ni/Cu 금속 전극 간격에 따른 특성 평가)

  • Kim, Min-Jeong;Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.225-229
    • /
    • 2009
  • The front metal contact is one of the most important element influences in efficiency in the silicon solar cell. First of all selective of the material and formation method is important in metal contacts. Commercial solar cells with screen-printed contacts formed by using Ag paste process is simple relatively and mass production is easy. But it suffer from a low fill factor and a high shading loss because of high contact resistance. Besides Ag paste too expensive. because of depends income. This paper applied for Ni/Cu metallization replace for paste of screen printing front metal contact. Low cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the screen-printed Ag contacts. Ni has been proposed as a suitable silicide for the salicidation process and is expected to replace conventional silicides. Copper is a promising material for the electrical contacts in solar cells in terms of conductivity and cost. In experiments Ni/Cu metal contact applied same grid formation of screen-printed solar cell. And it has variation of different grid spacing. It was verified that the wide spacing of grid finger could increase the series resistance also the narrow spacing of grid finger also implies a grid with a higher density of grid fingers. Through different grid spacing found alteration of efficiency.

  • PDF

High Efficient and Stable Dye-sensitized Solar Cells (DSSCs) with Low Melting Point Glass Frits

  • Kim, Jong-U;Kim, Dong-Seon;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • $TiO_2$ films were modified by adding a glass frit as a light scattering particle and applied to an anode electrode in dye-sensitized solar cells (DSSCs) to enhance the adhesion between $TiO_2$ and fluorine doped transparent oxide (FTO). Low melting point glass frits at contents of (3 to 7wt%) were added to the nano crystalline $TiO_2$ films. The light scattering properties, photovoltaic properties and microstructures of the photo electrodes were examined to determine the role of the low glass transition temperature ($T_g$) glass frit. Electrochemical impedance spectroscopy, Brunauer-Emmett-Teller method and scratch test were conducted to support the results. The DSSC with the $TiO_2$ film containing 3wt% low Tg glass frit showed optimal performance (5.1%, energy conversion efficiency) compared to the $TiO_2$-based one. The photocurrent density slightly decreased by adding 3wt% of the frit due to its large size and non conductivity. However, the decrease of current density followed by the decrease of electron transfer due to the large frit in $TiO_2$ electrode was compensated by the scattering effect, high surface area and reduced the electron transfer impedance at the electrolyte-dye-$TiO_2$ interface. The stability of the photo electrodes was improved by the frit, which chemically promoted the sintering of $TiO_2$ at relatively low temperature ($450^{\circ}C$).

  • PDF