• Title/Summary/Keyword: File-Per-Table

Search Result 6, Processing Time 0.023 seconds

An Analysis of Performance Error of Roundness Measuring Instrument -by phase different method- (眞圓度 測定器의 誤差特性에 대한 解析 -위상차법-)

  • 한응교;허문석;박익근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.31-37
    • /
    • 1988
  • A phase different method to evaluate the instrument error of roundness measuring instrument and the form error of specimens for the calibration of the instrument is used. An instrument with a rotary table supported by an air bearing was calibrated by using the standard balls as a standard. The calibration was carried out repeatedly by setting the same ball in 12 phase angles(per 30.deg.) on the table and by recording their roundness errors with a magnification of 100,000 times. As a result of data analysis of all the observations, readout at each of 144 orientations(per 2.5.deg.) from recorded data file, the error of performance of the instrument and the specimens are separated. In the particular instrument used in the present experiment, the error of the instrument was determined with the accuracy of 0.0164 (.mu.m) and the form error of the specimens was determined with the accuracy of 0.0264,0.0172(.mu.m), respectively. If the instrument was calibrated by using the above specimens, then the accuracy of the measurement of roundness error can be improved to about 0.017 (.mu.m).

  • PDF

A Study on the Improvement Method of Deleted Record Recovery in MySQL InnoDB (MySQL InnoDB의 삭제된 레코드 복구 기법 개선방안에 관한 연구)

  • Jung, Sung Kyun;Jang, Jee Won;Jeoung, Doo Won;Lee, Sang Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.12
    • /
    • pp.487-496
    • /
    • 2017
  • In MySQL InnoDB, there are two ways of storing data. One is to create a separate tablespace for each table and store it separately. Another is to store all table and index information in a single system tablespace. You can use this information to recover deleted data from the record. However, in most of the current database forensic studies, the former is actively researched and its structure is analyzed, whereas the latter is not enough to be used for forensics. Both approaches must be analyzed in terms of database forensics because their storage structures are different from each other. In this paper, we propose a method for recovering deleted records in a method of storing records in IBDATA file, which is a single system tablespace. First, we analyze the IBDATA file to reveal its structure. And introduce delete record recovery algorithm which extended to an unallocated page area which was not considered in the past. In addition, we show that the recovery rate is improved up to 68% compared with the existing method through verification using real data by implementing the algorithm as a tool.

Trueness and precision of scanning abutment impressions and stone models according to dental CAD/CAM evaluation standards

  • Jeon, Jin-Hun;Hwang, Seong-Sig;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.335-339
    • /
    • 2018
  • PURPOSE. The purpose of the present study was to compare scanning trueness and precision between an abutment impression and a stone model according to dental computer-aided design/computer-aided manufacturing (CAD/CAM) evaluation standards. MATERIALS AND METHODS. To evaluate trueness, the abutment impression and stone model were scanned to obtain the first 3-dimensional (3-D) stereolithography (STL) file. Next, the abutment impression or stone model was removed from the scanner and re-fixed on the table; scanning was then repeated so that 11 files were obtained for each scan type. To evaluate precision, the abutment impression or stone model was scanned to obtain the first 3-D STL file. Without moving it, scanning was performed 10 more times, so that 11 files were obtained for each scan type. By superimposing the first scanned STL file onto the other STL files one by one, 10 color-difference maps and reports were obtained; i.e., 10 experimental scans per type. The independent t-test was used to compare root mean square (RMS) data between the groups (${\alpha}=.05$). RESULTS. The $RMS{\pm}SD$ values of scanning trueness of the abutment impression and stone model were $22.4{\pm}4.4$ and $17.4{\pm}3.5{\mu}m$, respectively (P<.012). The $RMS{\pm}SD$ values of scanning precision of the abutment impression and stone model were $16.4{\pm}2.9$ and $14.6{\pm}1.6{\mu}m$, respectively (P=.108). CONCLUSION. There was a significant difference in scanning trueness between the abutment impression and stone model, as evaluated according to dental CAD/CAM standards. However, all scans showed high trueness and precision.

Distributed Table Join for Scalable RDFS Reasoning on Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 대용량 RDFS 추론을 위한 분산 테이블 조인 기법)

  • Lee, Wan-Gon;Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.674-685
    • /
    • 2014
  • The Knowledge service system needs to infer a new knowledge from indicated knowledge to provide its effective service. Most of the Knowledge service system is expressed in terms of ontology. The volume of knowledge information in a real world is getting massive, so effective technique for massive data of ontology is drawing attention. This paper is to provide the method to infer massive data-ontology to the extent of RDFS, based on cloud computing environment, and evaluate its capability. RDFS inference suggested in this paper is focused on both the method applying MapReduce based on RDFS meta table, and the method of single use of cloud computing memory without using MapReduce under distributed file computing environment. Therefore, this paper explains basically the inference system structure of each technique, the meta table set-up according to RDFS inference rule, and the algorithm of inference strategy. In order to evaluate suggested method in this paper, we perform experiment with LUBM set which is formal data to evaluate ontology inference and search speed. In case LUBM6000, the RDFS inference technique based on meta table had required 13.75 minutes(inferring 1,042 triples per second) to conduct total inference, whereas the method applying the cloud computing memory had needed 7.24 minutes(inferring 1,979 triples per second) showing its speed twice faster.

Development in Computer Program for Standardized Quantitative Recipes in Military Services (국방 표준 식단 작성을 위한 전산화 프로그램 개발에 관한 연구)

  • 문수재;손경희;양일선;손춘영;김대엽
    • Korean journal of food and cookery science
    • /
    • v.7 no.3
    • /
    • pp.61-68
    • /
    • 1991
  • The purpose of this study was to develop a computerized menu planning for military who need balanced diet for 365 days so that more effective and efficient food service can be provided. For this purpose, the evaluation of current military menu planning and production management system was carried out and the result was being applied to the computerized memo planning program which was being developed on this study. The contents of the computerized programs developed for this study were summerized as follows: 1) Programs for calculating nutrient value of foods and standarized meals. 2) Programs for outputing of meal table by a day or month. 3) Programs for outputing standardized recipes. 4) Programs for calculating nutrient value per day. 5) Programs for outputing one-sowing, one hundred-serving size and price. 6) Programs for calculating average of nutrient value by monthly and yearly. 7) Programs for calculating average of the amount used for a year. The personal computer type IBM PC-AT was used for the development of the software for this programs. Also, a work performance file was made by using the DBase III plus package.

  • PDF

Precision Evaluation of Scanning the Digital Dental Abutment Impression and Dental Gypsum Model according to 3-dimensional Superimposing Different Skills (3차원 중첩 기술 차이에 따른 디지털 치과용 지대치 인상체 및 경석고 모형의 스캐닝 정밀도 평가)

  • Jeon, Jin-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.639-645
    • /
    • 2018
  • The objective of this research was to compare the precision of scanning the digital abutment impression and gypsum model according to 3-dimensional superimposing different skills. There were made with the abutment impression and gypsum model of a maxillary 1st premolar, blue light scanner scanned to obtain the stereolithography (STL) file. After the same process was performed 10 more times without moving them on the scanner table about the abutment impression and gypsum model, respectively (n=11, per types). By superimposing the date of scanning the abutment impression and gypsum model used with no control and best-fit-alignment skills, 10 color-difference maps and root mean square (RMS) data were obtained. The independent t-test was performed to compare RMS data between the each other groups (${\alpha}=0.05$). In the scanning abutment impressions, $RMS{\pm}SD$ of no control, best-fit-alignment showed $6.86{\pm}0.94$, $5.04{\pm}0.24$. in the scanning gypsum model, $4.98{\pm}1.16$, $3.39{\pm}0.07$, all groups showed a significant difference (P<0.001). Trough the this study's result, not only best-fit-alignment but no control is used with digital dental computer-aided design/computer-aided manufacturing (CAD/CAM) research and clinical part.