• Title/Summary/Keyword: File Fingerprinting

Search Result 4, Processing Time 0.019 seconds

A Clustering File Backup Server Using Multi-level De-duplication (다단계 중복 제거 기법을 이용한 클러스터 기반 파일 백업 서버)

  • Ko, Young-Woong;Jung, Ho-Min;Kim, Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.7
    • /
    • pp.657-668
    • /
    • 2008
  • Traditional off-the-shelf file server has several potential drawbacks to store data blocks. A first drawback is a lack of practical de-duplication consideration for storing data blocks, which leads to worse storage capacity waste. Second drawback is the requirement for high performance computer system for processing large data blocks. To address these problems, this paper proposes a clustering backup system that exploits file fingerprinting mechanism for block-level de-duplication. Our approach differs from the traditional file server systems in two ways. First, we avoid the data redundancy by multi-level file fingerprints technology which enables us to use storage capacity efficiently. Second, we applied a cluster technology to I/O subsystem, which effectively reduces data I/O time and network bandwidth usage. Experimental results show that the requirement for storage capacity and the I/O performance is noticeably improved.

A Study on Identification of the Source of Videos Recorded by Smartphones (스마트폰으로 촬영된 동영상의 출처 식별에 대한 연구)

  • Kim, Hyeon-seung;Choi, Jong-hyun;Lee, Sang-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.885-894
    • /
    • 2016
  • As smartphones become more common, anybody can take pictures and record videos easily nowadays. Video files taken from smartphones can be used as important clues and evidence. While you analyze video files taken from smartphones, there are some occasions where you need to prove that a video file was recorded by a specific smartphone. To do this, you can utilize various fingerprint techniques mentioned in existing research. But you might face the situation where you have to strengthen the result of fingerprinting or fingerprint technique can't be used. Therefore forensic investigation of the smartphone must be done before fingerprinting and the database of metadata of video files should be established. The artifacts in a smartphone after video recording and the database mentioned above are discussed in this paper.

Android Application Code Protection Scheme Using Fingerprint Authentication and Dynamic Loading (지문 인증과 동적 로딩을 이용한 안드로이드 애플리케이션 코드 보호 기법)

  • Lyoo, Hwahn-il;Suk, Jae-Hyuk;Park, Jin-Hyung;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1361-1372
    • /
    • 2017
  • If an external attacker takes from a victim's smartphone a copy of a secret application or an application to which fingerprinting technique is applied, secret information can be leaked or the legitimate user can be misunderstood as an illegal redistributor, which results in a serious security problem. To solve this problem, this paper proposes an Android application code protection scheme using fingerprint authentication and dynamic loading. The proposed scheme divides one application into CLR(Class LoadeR) and SED(SEperated Dex). CLR is an APK file with the ability to dynamically load the SED, and the SED is a file containing the classes required to run the application. The SED is stored inside the smartphone after being encrypted, and the SED can be decrypted only if the user is successfully authenticated using his or her fingerprint. The proposed scheme can protect the application code from the attacker who physically acquired user's smartphone.

Rice Proteomics: A Functional Analysis of the Rice Genome and Applications (프로테옴 해석에 의한 벼 게놈 기능해석과 응용)

  • Woo, Sun-Hee;Kim, Hong-Sig;Song, Berm-Heun;Lee, Chul-Won;Park, Young-Mok;Jong, Seung-Keun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.