• Title/Summary/Keyword: Figshare

Search Result 4, Processing Time 0.022 seconds

A Study on the Sharing of Research Data in Library and Information Science Field (문헌정보학 분야 연구데이터 공유에 관한 연구)

  • Cho, Jane
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.59-79
    • /
    • 2017
  • This study analyzed the type, subject and open level of research data in the field of library and information science field shared by Figshare, and statistically analyzed the characteristics of data with relatively high recyclability. The results of the analysis showed that datasets and papers were most common data types, and open access and research data were the most common keywords of data, and that 70% of the data were published in a form that can not be processed mechanically such as pdf. As a result of analysis of the relationship between characteristics of research data and degree of sharing, open access areas such as APC (Article Processing Charge) were found to be most common in the subject. However in data type, gray literature such as paper found to be highly utilized rather than dataset.

IPC-CNN: A Robust Solution for Precise Brain Tumor Segmentation Using Improved Privacy-Preserving Collaborative Convolutional Neural Network

  • Abdul Raheem;Zhen Yang;Haiyang Yu;Muhammad Yaqub;Fahad Sabah;Shahzad Ahmed;Malik Abdul Manan;Imran Shabir Chuhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2589-2604
    • /
    • 2024
  • Brain tumors, characterized by uncontrollable cellular growths, are a significant global health challenge. Navigating the complexities of tumor identification due to their varied dimensions and positions, our research introduces enhanced methods for precise detection. Utilizing advanced learning techniques, we've improved early identification by preprocessing clinical dataset-derived images, augmenting them via a Generative Adversarial Network, and applying an Improved Privacy-Preserving Collaborative Convolutional Neural Network (IPC-CNN) for segmentation. Recognizing the critical importance of data security in today's digital era, our framework emphasizes the preservation of patient privacy. We evaluated the performance of our proposed model on the Figshare and BRATS 2018 datasets. By facilitating a collaborative model training environment across multiple healthcare institutions, we harness the power of distributed computing to securely aggregate model updates, ensuring individual data protection while leveraging collective expertise. Our IPC-CNN model achieved an accuracy of 99.40%, marking a notable advancement in brain tumor classification and offering invaluable insights for both the medical imaging and machine learning communities.

A Deep Learning Method for Brain Tumor Classification Based on Image Gradient

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1233-1241
    • /
    • 2022
  • Tumors of the brain are the deadliest, with a life expectancy of only a few years for those with the most advanced forms. Diagnosing a brain tumor is critical to developing a treatment plan to help patients with the disease live longer. A misdiagnosis of brain tumors will lead to incorrect medical treatment, decreasing a patient's chance of survival. Radiologists classify brain tumors via biopsy, which takes a long time. As a result, the doctor will need an automatic classification system to identify brain tumors. Image classification is one application of the deep learning method in computer vision. One of the deep learning's most powerful algorithms is the convolutional neural network (CNN). This paper will introduce a novel deep learning structure and image gradient to classify brain tumors. Meningioma, glioma, and pituitary tumors are the three most popular forms of brain cancer represented in the Figshare dataset, which contains 3,064 T1-weighted brain images from 233 patients. According to the numerical results, our method is more accurate than other approaches.

Functional Requirements for Research Data Repositories

  • Kim, Suntae
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • Research data must be testable. Science is all about verification and testing. To make data testable, tools used to produce, collect, and examine data during the research must be available. Quite often, however, these data become inaccessible once the work is over and the results being published. Hence, information and the related context must be provided on how research data are preserved and how they can be reproduced. Open Science is the international movement for making scientific research data properly accessible for research community. One of its major goals is building data repositories to foster wide dissemination of open data. The objectives of this research are to examine the features of research data, common repository platforms, and community requests for the purpose of designing functional requirements for research data repositories. To analyze the features of the research data, we use data curation profiles available from the Data Curation Center of the Purdue University, USA. For common repository platforms we examine Fedora Commons, iRODS, DataONE, Dataverse, Open Science Data Cloud (OSDC), and Figshare. We also analyze the requests from research community. To design a technical solution that would meet public needs for data accessibility and sharing, we take the requirements of RDA Repository Interest Group and the requests for the DataNest Community Platform developed by the Korea Institute of Science and Technology Information (KISTI). As a result, we particularize 75 requirement items grouped into 13 categories (metadata; identifiers; authentication and permission management; data access, policy support; publication; submission/ingest/management, data configuration, location; integration, preservation and sustainability, user interface; data and product quality). We hope that functional requirements set down in this study will be of help to organizations that consider deploying or designing data repositories.